Сферические теоремы косинусов
Первая и вторая сферические теоремы косинусов устанавливают соотношения между сторонами и противолежащими им углами сферического треугольника.
Формулировка
Теоремы косинусов для сферического треугольника со сторонами a, b, c и углами A, B, C имеют следующий вид:
Эти две теоремы двойственны по отношению друг к другу, поскольку углы и стороны всякого сферического треугольника дополняются до развёрнутого угла сторонами и углами соответствующего полярного треугольника. Поэтому достаточно доказать одну из них.
Доказательство проведём с помощью проекций[1]. На рисунке показан сферический треугольник ABC на сфере радиуса R с центром в точке O. BP — перпендикуляр к плоскости большого круга, проходящего через сторону b, BM — перпендикуляр к OC, BN — перпендикуляр к OA. По утверждению, обратному теореме о трёх перпендикулярах, PM — перпендикуляр к OC, PN — перпендикуляр к OA. Заметим, что угол PMB равен π - C, кроме того, ON = R cos c и OM = R cos a. Далее, проецируем ломаную OMPN на прямую, содержащую ON.
- ,
- ,
- ,
- .
Подставляем три последних выражения и указанное выше выражение ON = R cos c в первое выражение и получаем:
- .
Теоремы косинусов для двух других сторон, то есть теорему для cos a и теорему для cos b, получаем аналогично, их также можно получить сразу из формулы для стороны c при помощи круговой перестановки букв:
Следствия и применение
Если угол C — прямой, первая теорема косинусов переходит в сферическую теорему Пифагора:
Хотя для решения косоугольных сферических треугольников обычно используются более удобные формулы, с помощью теоремы косинусов выводится важная для геодезии формула длины ортодромии — кратчайшего расстояния между точками на земной поверхности с известными координатами (в предположении сферичности Земли). Обозначим географические широты двух данных точек и , разность долгот — , кратчайшее расстояние между ними обозначим d, длину дуги в 1 градус — a. Тогда формула длины ортодромии[2]:
Эта формула сразу получается применением теоремы косинусов к стороне AB сферического треугольника PnAB. Подобная формула справедлива для любой сферической поверхности и поэтому её можно применять также для определения углового расстояния между звёздами по известным их экваториальным координатам[3].
Определим угловое расстояние (x) между звездой δ Цефея (экваториальные координаты: α1=22ч 29м, δ1=+58° 25′) и галактикой Туманность Андромеды (α2=0ч 43м, δ2=+41° 16′) на небесной сфере. Выражаем α1 в градусах и долях градуса:
Аналогично получаем, что α2=10°,75. Выражаем δ1 в градусах и долях градуса:
Аналогично δ2=41°,27. Применяем теорему косинусов[4]:
Отсюда x=27°,11.
Теорема косинусов в её втором виде (соотношение между тремя углами и стороной) может быть применена для вычисления взаимного наклонения двух орбит при известном наклонении каждой орбиты к какой-то другой плоскости. Например, по этой формуле можно вычислить наклонение орбиты Плутона к орбите Нептуна, используя наклонения их орбит к эклиптике и долготы их восходящих узлов.
Определим взаимное наклонение (x) орбит Плутона (наклонение орбиты к эклиптике — 17°,14, долгота восходящего узла — 110°,30) и Нептуна (наклонение орбиты к эклиптике — 1°,77, долгота восходящего узла — 131°,79). В соответствующем сферическом треугольнике известны два угла: один равен наклонению орбиты Плутона к эклиптике, другой — дополнению наклонения орбиты Нептуна к эклиптике до 180 градусов. Известна также прилегающая к этим углам сторона, равная разности долгот восходящих узлов Плутона и Нептуна. Осталось применить второй вариант теоремы косинусов — для углов:
Отсюда x≈15°,51.
История
Математики средневекового Востока использовали утверждение, равносильное сферической теореме косинусов, при решении конкретных астрономических задач. Эти соотношения, используемые при определении высоты Солнца, встречаются в сочинениях Сабита ибн Корры, ал-Махани, ал-Баттани, Ибн Юниса, ал-Бируни.
Первая явная формулировка теоремы дана в XV веке Региомонтаном, который назвал её «теоремой Альбатегния» (по латинизированному имени ал-Баттани).
Примечания
- Приводится по изданию: Степанов Н.Н. Формулы косинуса стороны // Сферическая тригонометрия. — М.—Л.: ОГИЗ, 1948. — С. 24—28. — 154 с.
- Михайлов В.С., Кудрявцев В.Г., Давыдов В.С. 26.2. Основные формулы ортодромии. Способы её задания // Навигация и лоция. — Киев, 2009.
- Меёс Ж. 9. Угловое расстояние между объектами // Астрономические формулы для калькуляторов. — Мир, 1988. — С. 44—46. — 168 с. — ISBN 5030009361.
- Lee Kai Ming. PHYS 2021 — The Physical Universe. — 2010. — С. 6. Архивировано 3 декабря 2008 года.
Литература
- Вентцель М. К. Сферическая тригонометрия. 2-е изд., ИГКЛ, 1948, 115с.
- Матвиевская Г. П. Очерки истории тригонометрии. Ташкент: Фан, 1990.
- Степанов Н. Н. Сферическая тригонометрия. — Л.-М., 1948.