Расслоение на окружности

Расслоение на окружности — это расслоение, в котором слоями являются окружности .

Ориентированные расслоения на окружности известны также как главные U(1)-расслоения. В физике расслоения на окружности являются естественными геометрическими установками для электромагнетизма. Расслоение на окружности является частным случаем расслоений на сферы.

Как 3-многообразия

Расслоение на окружности поверхностей является важным примером 3-многообразий. Более общим классом 3-многообразий являются расслоения Зейферта, которые можно рассматривать как вид «вырожденных» расслоений на окружности или как расслоение на окружности двумерных орбиобразий.

Отношение к электродинамике

Уравнения Максвелла соответствует электромагнитному полю, представленному 2-формой F с гомологически эквивалентным нулю. В частности, всегда существует ковариантный вектор A, электромагнитный потенциал, (эквивалентно, аффинная связность), такой, что

Если дано расслоение на окружности P многообразия M и его проекция

,

имеем гомоморфизм

,

где является обратным образом. Каждый гомоморфизм соответствует монополю Дирака. Целые группы когомологий соответствуют квантованию электрического заряда. Эффект Ааронова — Бома можно понимать как голономию связи на ассоциированном линейном расслоении, описывающую волновую функцию электрона. В сущности, эффект Ааронова — Бома не является квантово-механическим эффектом (вопреки популярному представлению), так как здесь не вовлекается и не требуется никакого квантования при построении расслоения.

Примеры

  • Расслоение Хопфа является примером нетривиального расслоения на окружности.
  • Сферическое нормальное расслоение поверхности является другим примером расслоения на окружности.
  • Сферическое нормальное расслоение неориентируемой поверхности является расслоением на окружности, которое не является главным расслоением . Только ориентируемые поверхности имеют главные сферические касательные расслоения.
  • Другим методом для построения расслоения на окружности является использование комплексного линейного расслоения и взятие ассоциированного расслоения на сферы (в данном случае — на окружности). Поскольку это расслоение имеет индуцированную ориентацию из , получаем, что оно является главным расслоением [1]. Более того, характеристические классы из теории Чженя — Вейля расслоений согласуются с характеристическими классами .
  • Например, рассмотрим аналитификацию комплексной плоской кривой

Поскольку и характеристические классы отображаются обратно нетривиально, мы получаем, что линейное расслоение, ассоциированное с пучком , имеет класс Чженя .

Классификация

Классы изоморфности главных расслоений многообразия M находятся во взаимнооднозначном соответствии с гомотопическими классами отображений , где называется классифицирующим пространством для U(1). Заметим, что является бесконечномерным комплексным проективным пространством, и что оно является примером пространства Эйленберга-Маклейна . Такие расслоения классифицируются элементами второй целочисленной группы когомологий многообразия M, поскольку

.

Этот изоморфизм реализуется классом Эйлера. Эквивалентно, он является первым классом Чженя гладкого комплексного линейного расслоения (в основном потому, что окружность гомотопически эквивалентна , комплексной плоскости с удалённым началом координат. А тогда комплексное линейное расслоение с удалённой нулевой секцией гомотопически эквивалентно расслоению на окружности)

Расслоение на окружности является главным расслоением тогда и только тогда, когда ассоциированное отображение гомотопно нулю, что верно тогда и только тогда, когда расслоение является послойно ориентированными. Для более общего случая, когда расслоение на окружности многообразия M не может быть ориентированным, классы изоморфизмов находятся во взаимнооднозначном соответствии с гомотопическими классами отображений . Это следует из расширения групп , где .

Комплексы Делиня

Вышеприведённая классификация применима только к расслоениям на окружности в общем случае. Соответствующая классификация для гладких расслоений на окружности, или, скажем, расслоение на окружности с аффинной связностью требует более сложную теорию когомологий. Так, гладкие расслоения на окружности классифицируются второй когомологией Делиня , расслоения на окружности с аффинной связностью классифицируются посредством , в то время как классифицирует линейные расслоения на снопы.

См. также

Примечания

Литература

  • Shiing-shen Chern. Circle bundles // Lecture Notes in Mathematics. Springer Berlin/Heidelberg, 1977. — Т. 597/1977. — С. 114–131. — ISBN 978-3-540-08345-0..
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.