Двумерный электронный газ

Двуме́рный электро́нный газ (ДЭГ) — электронный газ, в котором частицы могут двигаться свободно только в двух направлениях.

Двумерный электронный газ в MOSFET формируется в помеченной серым цветом области при подаче напряжения на затвор.

Ограничивающий движение электронов в третьем направлении потенциал может быть на практике создан электрическим полем, например, с помощью затвора в полевом транзисторе или встроенным электрическим полем в области гетероперехода между различными полупроводниками.

Понятие двумерного электронного газа

Зонная диаграмма простого HEMT.

Двумерным электронным газом (англ. two-dimensional electron gas, 2DEG) называется популяция электронов, находящихся в квантовой яме с ограничением движения по одной декартовой координате. Яма создаётся профилем зоны проводимости полупроводниковой структуры (пример на рисунке).

Энергия электрона квантуется в одном направлении (например ), а по двум другим направлениям () движение скободно:

.

Местонахождение ДЭГ показано на рисунке жёлтым щветом, при этом у самого «носика» квантовой ямы электронов нет, заполнение начинается от энергии (уровни энергии не помечены; ось направлена слева направо).

Чаще всего задействована только одна подзона, то есть только нижний уровень . Если число заполненных энергетических подзон в ДЭГ превышает одну, говорят о квазидвумерном электронном газе. По аналогии с ДЭГ можно говорить и о двумерном дырочном газе, тогда яма должна быть создана в валентной ооне.

Плотность состояний электронов в ДЭГ

Выражение для плотности состояний

Плотность состояний в двумерной системе зависит от энергии ступенчатым образом. При она нулевая. В наиболее важном диапазоне от до (как раз соответствующем ДЭГ) она составляет

,

где и спиновое и долинное вырождение соответственно, — редуцированная постоянная Планка, эффективная масса электрона. При более высоких энергиях это выражение ещё домножается на количество уровней с в яме.

Знание плотности состояний в ДЭГ позволяет рассчитать квантовую ёмкость ДЭГ согласно выражению[1]:

,

где — заряд электрона.

Для арсенида галлия GaAs, который является однодолинным полупроводником, вырождение остаётся только по спину и плотность состояний запишется в виде

.

Оценка величины плотности состояний

В пренебрежении эффектами вырождения и возможным отличием массы от массы свободного электрона , плотность состояний 2D-системы записывается как

.

Это можно переписать, используя понятия боровского радиуса () и боровского масштаба энергий ():

,

где комптоновская длина волны электрона, постоянная тонкой структуры, а — скорость света. Подставляя эти значения в формулу для , получаем:

,

где — боровский квант плоскости, а — боровская плотность состояний. Таким образом, совпадает с боровским масштабом.

В числах, см-2эВ-1.

Подвижность электронов в ДЭГ

Значимость высокой подвижности

Важнейшая характеристика ДЭГ — подвижность электронов. От неё, например, зависит быстродействие полевых транзисторов различных типов, использующих ДЭГ. Именно эта характеристика является определяющей при изучении дробного квантового эффекта Холла (данный эффект наблюдался впервые на образце с подвижностью 90 000 см2/Вс[2]).

Есть ряд причин для уменьшения подвижности ДЭГ. Среди них — влияние фононов, примесей, шероховатостей границ. Если с фононами и шероховатостью борются с помощью понижения температуры и вариаций параметров роста, то примеси и дефекты выступают основным источником рассеяния в ДЭГ. Для увеличения подвижности в гетероструктуре с ДЭГ часто используют нелегированную прослойку материала, называемую спейсером, чтобы пространственно разнести ионизованные примеси и ДЭГ.

Рекордные показатели подвижности

Для рекордной подвижности ДЭГ выращенные гетероструктуры должны иметь очень малое количество рассеивающих центров или дефектов. Это достигается использованием источников материала и вакуума рекордной чистоты. В квантовой яме с ДЭГ отсутствуют легирующие примеси и электроны поставляются из модулированно легированных пространственно разделённых слоёв с увеличенной эффективной массой.

В 2009 году подвижность достигла[3] значения 35106 см2В-1с-1 при концентрации 31011 см-2. В 2020 году рекордная подвижность была улучшена благодаря созданию ещё более чистых материалов (Ga и Al) для МЛЭ и достигла значения 44106 см2В-1с-1 при концентрации 21011 см-2. Для роста применялись очищенные источники и несколько крионасосов для дополнительной очистки остаточных газов в вакуумной камере, что позволило достичь более низкого давления чем 210-12 Торр[4].

См. также

Примечания

  1. Слюсар В. И. Наноантенны: подходы и перспективы // Электроника: Наука, Технология, Бизнес. — 2009. — № 2. — С. 61.
  2. D. C. Tsui, H. L. Stormer, and A. C. Gossard. Двумерный магнитотранспорт в экстремальном квантовом пределе // Phys. Rev. Lett.. — 1982. Т. 48. С. 1559. doi:10.1103/PhysRevLett.48.1559.
  3. V. Umanskya, M. Heiblum, Y. Levinson, J. Smet, J. Nübler, M. Dolev. МЛЭ рост ДЭГ с ультра низким беспорядком с подвижностью превышающей 35×106см2/В сек // J. Cryst. Growth. — 2009. Т. 311. С. 1658—1661. doi:10.1016/j.jcrysgro.2008.09.151.
  4. Yoon Jang Chung, K. A. Villegas-Rosales, K. W. Baldwin, P. T. Madathil, K. W. West, M. Shayegan, and L. N. Pfeiffer. Двумерные электронные системы с рекордными свойствами. С. —. arXiv:2010.02283.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.