Технологический процесс в электронной промышленности
Технологический процесс полупроводникового производства — технологический процесс по изготовлению полупроводниковых (п/п) изделий и материалов; часть производственного процесса по изготовлению п/п изделий (транзисторов, диодов и т. п.); состоит из: последовательности технологических (обработка, сборка) и контрольных операций.
При производстве п/п изделий применяется фотолитография и литографическое оборудование. Разрешающая способность (в мкм и нм) этого оборудования (т. н. проектные нормы) и определяет название применяемого конкретного технологического процесса.
Совершенствование технологии и пропорциональное уменьшение размеров п/п структур способствуют улучшению характеристик (размеры, энергопотребление, рабочие частоты, стоимость) полупроводниковых приборов (микросхем, процессоров, микроконтроллеров и т. д.). Особую значимость это имеет для процессорных ядер, в аспектах потребления электроэнергии и повышения производительности, поэтому ниже указаны процессоры (ядра) массового производства на данном техпроцессе.
Этапы технологического процесса при производстве микросхем
Технологический процесс производства полупроводниковых приборов и интегральных микросхем (микропроцессоров, модулей памяти и др.) включает нижеследующие операции.
- Механическую обработку полупроводниковых пластин — получают пластины полупроводника со строго заданной геометрией, нужной кристаллографической ориентацией (не хуже ±5 %) и классом чистоты поверхности. Эти пластины в дальнейшем служат заготовками в производстве приборов или подложками для нанесения эпитаксиального слоя.
- Химическую обработку (предшествующую всем термическим операциям) — удаление механически нарушенного слоя полупроводника и очистка поверхности пластины. Основные методы химической обработки: жидкостное и газовое травление, плазмохимические методы. Для получения на пластине рельефа (профилирование поверхности) в виде чередующихся выступов и впадин определённой геометрии, для вытравливания окон в маскирующих покрытиях, для проявления скрытого изображения в слое экспонированного фоторезиста, для удаления его заполимеризированных остатков, для получения контактных площадок и разводки в слое металлизации применяют химическую (электрохимическую) обработку.
- Эпитаксиальное наращивание слоя полупроводника — осаждение атомов полупроводника на подложку, в результате чего на ней образуется слой, кристаллическая структура которого подобна структуре подложки. При этом подложка часто выполняет лишь функции механического носителя.
- Получение маскирующего покрытия — для защиты слоя полупроводника от проникновения примесей на последующих операциях легирования. Чаще всего проводится путём окисления эпитаксиального слоя кремния в среде кислорода при высокой температуре.
- Фотолитография — производится для образования рельефа в диэлектрической плёнке.
- Введение электрически активных примесей в пластину для образования отдельных p- и n-областей — нужно для создания электрических переходов, изолирующих участков. Производится методом диффузии из твёрдых, жидких или газообразных источников, основными диффузантами в кремний являются фосфор и бор.
- Термическая диффузия — направленное перемещение частиц вещества в сторону убывания их концентрации: определяется градиентом концентрации. Часто применяется для введения легирующих примесей в полупроводниковые пластины (или выращенные на них эпитаксиальные слои) для получения противоположного, по сравнению с исходным материалом, типа проводимости либо элементов с более низким электрическим сопротивлением.
- Ионное легирование (применяемое при изготовлении полупроводниковых приборов с большой плотностью переходов, солнечных батарей и СВЧ-структур) определяется начальной кинетической энергией ионов в полупроводнике и выполняется в два этапа:
- в полупроводниковую пластину на вакуумной установке внедряют ионы
- производится отжиг при высокой температуре
- В результате восстанавливается нарушенная структура полупроводника и ионы примеси занимают узлы кристаллической решётки.
- Получение омических контактов и создание пассивных элементов на пластине — с помощью фотолитографической обработки в слое оксида, покрывающем области сформированных структур, над предварительно созданными сильно легированными областями n+- или p+-типа, которые обеспечивают низкое переходное сопротивление контакта, вскрывают окна. Затем методом вакуумного напыления всю поверхность пластины покрывают слоем металла (металлизируют), излишек металла удаляют, оставив его только на местах контактных площадок и разводки. Полученные таким образом контакты, для улучшения адгезии материала контакта к поверхности и уменьшения переходного сопротивления, термически обрабатывают (операция вжигания). В случае напыления на материал оксида специальных сплавов получают пассивные тонкоплёночные элементы — резисторы, конденсаторы, индуктивности.
- Добавление дополнительных слоёв металла (в современных процессах — около 10 слоёв), между слоями располагают диэлектрик (англ. inter-metal dielectric, IMD) со сквозными отверстиями.
- Пассивация поверхности пластины. Перед контролем кристаллов необходимо очистить их внешнюю поверхность от различных загрязнений. Более удобной (в технологическом плане) является очистка пластин непосредственно после скрайбирования или резки диском, пока они ещё не разделены на кристаллы. Это целесообразно и потому, что крошки полупроводникового материала, образуемые при скрайбировании или надрезании пластин, потенциально являются причиной появления брака при разламывании их на кристаллы с образованием царапин при металлизации. Наиболее часто пластины очищают в деионизированной воде на установках гидромеханической (кистьевой) отмывки, а затем сушат на центрифуге, в термошкафу при температуре не более 60 °C или инфракрасным нагревом. На очищенной пластине определяются дефекты, вносимые операцией скрайбирования и разламывания пластин на кристаллы, а также при ранее проводившихся операциях — фотолитографии, окислении, напылении, измерении (сколы и микротрещины на рабочей поверхности, царапины и другие повреждения металлизации, остатки оксида на контактных площадках, различные остаточные загрязнения в виде фоторезиста, лака, маркировочной краски и т. п.).
- Тестирование неразрезанной пластины. Обычно это испытания зондовыми головками на установках автоматической разбраковки пластин. В момент касания зондами разбраковываемых структур измеряются электрические параметры. В процессе маркируются бракованные кристаллы, которые затем отбрасываются. Линейные размеры кристаллов обычно не контролируют, так как их высокая точность обеспечивается механической и электрохимической обработкой поверхности (толщина) и последующим скрайбированием (длина и ширина).
- Разделение пластин на кристаллы — механически разделяет (разрезанием) пластину на отдельные кристаллы.
- Сборка кристалла и последующие операции монтажа кристалла в корпус и герметизация — присоединение к кристаллу выводов и последующая упаковка в корпус с последующей его герметизацией.
- Электрические измерения и испытания — проводятся с целью отбраковки изделий, имеющих несоответствующие технической документации параметры. Иногда специально выпускаются микросхемы с «открытым» верхним пределом параметров, допускающих впоследствии работу в нештатных для остальных микросхем режимах повышенной нагрузки (см., например, Разгон компьютеров).
- Выходной контроль, завершающий технологический цикл изготовления устройства, весьма важная и сложная задача (так, для проверки всех комбинаций схемы, состоящей из 20 элементов с 75 (совокупно) входами, при использовании устройства, работающего по принципу функционального контроля со скоростью 104 проверок в секунду, потребуется 1019 лет!)
- Маркировка, нанесение защитного покрытия, упаковка — завершающие операции перед отгрузкой готового изделия конечному потребителю.
Технологии производства полупроводниковой продукции с субмикронными размерами элементов основаны на чрезвычайно широком круге сложных физико-химических процессов: получение тонких плёнок термическим и ионно-плазменным распылением в вакууме, механическая обработка пластин производится по 14-му классу чистоты с отклонением от плоскостности не более 1 мкм, широко применяется ультразвук и лазерное излучение, используются отжиг в кислороде и водороде, рабочие температуры при плавлении металлов достигают более 1500 °C, при этом диффузионные печи поддерживают температуру с точностью 0,5 °C, широко применяются опасные химические элементы и соединения (например, белый фосфор).
Всё это обусловливает особые требования к производственной гигиене, так называемую «электронную гигиену», ведь в рабочей зоне обработки полупроводниковых пластин или на операциях сборки кристалла не должно быть более пяти пылинок размером 0,5 мкм в 1 л воздуха. Поэтому в чистых комнатах на фабриках по производству подобных изделий все работники обязаны носить специальные комбинезоны[1]. В рекламных материалах Intel спецодежда работников получила название bunny suit («костюм кролика»)[2][3].
Техпроцессы 1970-х — 1980-х
Ранние техпроцессы, до стандартизации NTRS (National Technology Roadmap for Semiconductors) и ITRS, обозначались «xx мкм» (xx микрон), где xx сперва обозначало техническое разрешение литографического оборудования, затем стало обозначать длину затвора транзистора, полушаг линий металла (half pitch) и ширину линий металла. В 1970-х существовало несколько техпроцессов, в частности 10, 8, 6, 4, 3, 2 мкм; в среднем, каждые три года происходило уменьшение шага с коэффициентом 0,7[4]
3 мкм
3 мкм — техпроцесс, соответствующий уровню технологии, достигнутому в 1975 году Zilog (Z80) и в 1979 году Intel (Intel 8086). Соответствует линейному разрешению литографического оборудования, примерно равному 3 мкм.
1,5 мкм
1,5 мкм — техпроцесс, соответствующий уровню технологии, достигнутому Intel в 1982 году. Соответствует линейному разрешению литографического оборудования, примерно равному 1,5 мкм.
0,8 мкм
0,8 мкм — техпроцесс, соответствующий уровню технологии, достигнутому в конце 1980-х — начале 1990-х годов компаниями Intel и IBM.
- Intel 80486 (1989 год)
- MicroSPARC I (1992 год)
- Первые Intel P5 Pentium на частотах 60 и 66 МГц (1993 год)
Техпроцессы после середины 1990-х
Обозначения для техпроцессов, внедренных начиная с середины 1990-х годов, были стандартизованы NTRS и ITRS и стали называться «Technology Node» или «Cycle». Реальные размеры затворов транзисторов логических схем стали несколько меньше, чем обозначено в названии техпроцессов 350 нм — 45 нм благодаря внедрению технологий resist-pattern-thinning и resist ashing. С этих пор коммерческие названия техпроцессов перестали соответствовать длине затвора[4][5].
С переходом на следующий техпроцесс ITRS площадь, занимаемая стандартной ячейкой 1 бита памяти SRAM, в среднем уменьшалась вдвое. В период с 1995 по 2008 года такое удвоение плотности транзисторов происходило в среднем каждые 2 года[4].
350 нм
350 нм — техпроцесс, соответствующий уровню технологии, достигнутому в 1995-97 годах ведущими компаниями - производителями микросхем, такими как Intel, IBM, и TSMC. Соответствует линейному разрешению литографического оборудования, примерно равному 0,35 мкм.
- AMD Am5x86 1995
- AMD K5 1996
- AMD K6 (Model 6) 1997
- Intel Pentium MMX (P55)
- Intel Pentium Pro
- Pentium II (Klamath)
- МЦСТ-R150 (2001 г., 150 МГц)
250 нм
250 нм — техпроцесс, соответствующий уровню технологии, достигнутому в 1998 году ведущими компаниями - производителями микросхем. Соответствует линейному разрешению литографического оборудования, примерно равному 0,25 мкм.
Используется до 6 слоёв металла, минимальное количество литографических масок - 22.
- AMD K6 (Model 7) 1998
- AMD K6-2 1998
- AMD K6-III 1999
- Pentium II (Deschutes)
- Pentium III (Katmai)
180 нм
180 нм — техпроцесс, соответствующий уровню технологии, достигнутому в 1999 году ведущими компаниями - производителями микросхем. Соответствует удвоению плотности размещения по отношению к предыдущему техпроцессу 0,25 мкм.Также впервые используются внутренние соединения на основе медных соединений (Copper-based chips) с меньшим сопротивлением, чем у ранее применявшегося алюминия.
Содержит до 6-7 слоёв металла. Минимальное количество литографических масок - около 22.
130 нм
130 нм — техпроцесс, соответствующий уровню технологии, достигнутому в 2001 году ведущими компаниями - производителями микросхем. В соответствии с моделями ITRS[6], соответствует удвоению плотности размещения элементов по отношению к предыдущему техпроцессу 0,18 мкм.
- Intel Pentium III Tualatin — июнь 2001
- Intel Celeron Tualatin-256 — октябрь 2001
- Intel Pentium M Banias — март 2003
- Intel Pentium 4 Northwood — январь 2002
- Intel Celeron Northwood-128 — сентябрь 2002
- Intel Xeon Prestonia и Gallatin — февраль 2002
- AMD Athlon XP Thoroughbred, Thorton и Barton
- AMD Athlon MP Thoroughbred — август 2002
- AMD Athlon XP-M Thoroughbred, Barton и Dublin
- AMD Duron Applebred — август 2003
- AMD K7 Sempron Thoroughbred-B, Thorton и Barton — июль 2004
- AMD K8 Sempron Paris — июль 2004
- AMD Athlon 64 Clawhammer и Newcastle — сентябрь 2003
- AMD Opteron Sledgehammer — июнь 2003
- МЦСТ Эльбрус 2000 (1891BM4Я) — июль 2008
- МЦСТ-R500S (1891ВМ3) — 2008, 500 МГц
Техпроцессы менее 100 нм
Для обозначения более тонких техпроцессов разные технологические альянсы могут следовать различным рекомендациям (Foundry/IDM). В частности, TSMC использует обозначения 40 нм, 28 нм и 20 нм для техпроцессов, сходных по плотности с процессами Intel 45 нм, 32 нм и 22 нм соответственно[7].
90 нм
90 нм — техпроцесс, соответствующий уровню полупроводниковой технологии, которая была достигнута к 2002—2003 годам. В соответствии с моделями ITRS[6], соответствует удвоению плотности размещения элементов по отношению к предыдущему техпроцессу 0,13 мкм.
Технологический процесс с проектной нормой 90 нм часто используется с технологиями напряженного кремния, а также c новыми диэлектрическими материалами с низкой диэлектрической проницаемостью (en:Low-k dielectric).
- Intel Pentium 4 (Prescott)
- AMD Turion 64 X2 (мобильный)
- МЦСТ-4R (4 ядра, 1 ГГц)
- Эльбрус-S (2010)
65 нм
65 нм — техпроцесс, соответствующий уровню технологии, достигнутому к 2004 году ведущими компаниями - производителями микросхем. В соответствии с моделями ITRS[6], соответствует удвоению плотности размещения элементов по отношению к предыдущему техпроцессу 90 нм.
- Intel Pentium 4 (Cedar Mill) — 2006-01-16
- Intel Pentium D 900-series — 2006-01-16
- Intel Celeron D (Cedar Mill cores) — 2006-05-28
- Intel Celeron M
- Intel Core — 2006-01-05
- Intel Core 2 — 2006-07-27
- Intel Core 2 Duo
- Intel Core 2 Quad
- Intel Xeon — 2006-03-14
- AMD Athlon 64 — 2007-02-20
- AMD Phenom X3, X4
- AMD Turion 64 X2 (мобильный)
- AMD Turion 64 X2 Ultra (мобильный)
- STI Cell — PlayStation 3 — 2007-11-17
- Microsoft Xbox 360 «Falcon» CPU — 2007-09
- Microsoft Xbox 360 «Opus» CPU — 2008
- Microsoft Xbox 360 «Jasper» CPU — 2008-10
- Microsoft Xbox 360 «Jasper» GPU — 2008-10
- Sun UltraSPARC T2 — 2007-10
- TI OMAP 3 — 2008-02
- VIA Nano — 2008-05
- Loongson — 2009
- Эльбрус-4С — 2014
45 нм / 40 нм
45 нм и 40 нм — техпроцесс, соответствующий уровню технологии, достигнутому к 2006—2007 годам ведущими компаниями - производителями микросхем. В соответствии с моделями ITRS[6], соответствует удвоению плотности размещения элементов по отношению к предыдущему техпроцессу 65 нм.
Для микроэлектронной промышленности стал революционным, так как это был первый техпроцесс, использующий технологию high-k/metal gate[8][9] (HfSiON/TaN в технологии компании Intel), для замены физически себя исчерпавших SiO2/poly-Si
- Intel Core 2 Duo
- Intel Core 2 Quad
- AMD Phenom II X2, X3, X4, X6
- AMD Athlon II X2, X3, X4
- Fujitsu SPARC64 VIIIfx
- XCGPU (APU от GlobalFoundries, с 2010)
32 нм / 28 нм
32 нм — техпроцесс, соответствующий уровню технологии, достигнутому к 2009—2010 годам ведущими компаниями - производителями микросхем. В соответствии с моделями ITRS[6], соответствует удвоению плотности размещения элементов по отношению к предыдущему техпроцессу 45 нм.
Осенью 2009 компания Intel находилась на этапе перехода к этому новому техпроцессу[10][11][12][13][14]. С начала 2011 начали производиться процессоры по данному техпроцессу.
В третьем квартале 2010 года на новых мощностях расположенной на Тайване фабрики Fab 12 компании TSMC начался серийный выпуск продукции по технологии, получившей маркетинговое обозначение «28-нанометров»[15] (не является обозначением, рекомендуемым ITRS).
- Intel Sandy Bridge
- Intel Saltwell
- AMD Bulldozer
- AMD Piledriver (второе поколение Bulldozer)
- APU от AMD: Llano и Trinity (второе поколение AMD APU)
- Многоядерные процессоры Snapdragon фирмы Qualcomm.
- Мобильные процессоры Apple A7, изготовляемые Samsung.
- AMD Steamroller (третье поколение Bulldozer - 2014)[16][17]
- Baikal-T1 — 2015
- Эльбрус-8С (восьмиядерный процессор серверного класса с архитектурой «Эльбрус» - 2015)[18][19]
В мае 2011 по технологии 28 нм фирмой Altera была выпущена самая большая в мире микросхема, состоящая из 3,9 млрд транзисторов[20].
22 нм / 20 нм
22 нм — техпроцесс, соответствующий уровню технологии, достигнутому к 2009—2012 гг. ведущими компаниями — производителями микросхем. Соответствует удвоению плотности размещения элементов по отношению к предыдущему техпроцессу 32 нм.
22-нм элементы формируются путём фотолитографии, в которой маска экспонируется светом с длиной волны 193 нм[21][22].
В 2008 году на ежегодной выставке высоких технологий International Electron Devices Meeting в Сан-Франциско технологический альянс компаний IBM, AMD и Toshiba продемонстрировал ячейку памяти SRAM, выполненную по 22-нм техпроцессу из транзисторов типа FinFET, которые, в свою очередь, выполняются по прогрессивной технологии high-k/metal gate (затворы транзистора изготавливаются не из кремния, а из гафния), площадью всего 0,128 мкм² (0,58×0,22 мкм)[23].
Также о разработке ячейки памяти типа SRAM площадью 0,1 мкм², созданной по техпроцессу 22 нм, объявили IBM и AMD[24].
Первые работоспособные тестовые образцы регулярных структур (SRAM) представлены публике компанией Intel в 2009 году[25]. 22-нм тестовые микросхемы представляют собой память SRAM и логические модули. SRAM-ячейки размером 0,108 и 0,092 мкм² функционируют в составе массивов по 364 млн бит. Ячейка площадью 0,108 мкм² оптимизирована для работы в низковольтной среде, а ячейка площадью 0,092 мкм² является самой миниатюрной из известных сегодня ячеек SRAM.
По такой технологии производятся (с начала 2012 года):
- Intel Ivy Bridge / Ivy Bridge-E
- Intel Haswell (последователь Ivy Bridge, со встроенным GPU).
- Intel Bay Trail-M (мобильные Pentium и Celeron на микроархитектуре Silvermont; сентябрь 2013)
16 нм / 14 нм
По состоянию на май 2014, компания Samsung продолжала разработки техпроцессов 14 нм LPE/LPP[26]; а выпускать процессоры для Apple планирует в 2015 году[27].
По состоянию на сентябрь 2014, TSMC продолжала разработку 16-нм техпроцесса на транзисторах с вертикально расположенным затвором (Fin Field Effect Transistor, FinFET) и планировала начать 16-нм производство в 1 квартале 2015 года[28].
Согласно экстенсивной стратегии фирмы Intel, уменьшение техпроцесса до 14 нм изначально ожидалось через год после представления чипа Haswell (2013); процессоры на новом техпроцессе будут использовать архитектуру с названием Broadwell. Для критических слоёв техпроцесса 14 нм Intel потребовалось применение масок с технологией Inverse Lithography (ILT) и SMO (Source Mask Optimization)[29]
- процессоры Celeron N3000, N3050, N3150 и Pentium N3700 (Braswell) — начало продаж апрель 2015[30]
- Coffee Lake — десктопные процессоры от Intel (24 сентября 2017)
- AMD Ryzen — десктопные процессоры от AMD (2017)
- Мобильные процессоры Apple A10
Компания МЦСТ в 2021 году представила 16-нм процессор Эльбрус-16С.
В апреле 2018 года AMD представила процессоры Zen+ на улучшенном 14-нм техпроцессе, условно обозначенном как "12 нм":
- Ryzen 5 2600 и 2600X
- Ryzen 7 2700 и 2700X
10 нм
Тайваньский производитель United Microelectronics Corporation (UMC) сообщил, что присоединится к технологическому альянсу IBM для участия в разработке 10-нм CMOS-техпроцесса[31].
В 2011 году публиковалась информация о планах Intel по внедрению 10-нм техпроцесса к 2018 году[32], в октябре 2017 Intel сообщил о планах начать производство до конца 2017 года[33], но в итоге, после выпуска крайне ограниченной партией 10-нм мобильного процессора Intel Core i3-8121U в 2018, массовое производство процессоров Intel по 10-нм техпроцессу началось только в 2019 году для мобильных устройств и в 2020 для десктопных.
Пробный выпуск продукции по нормам 10 нм намечался компанией TSMC на 2015 год, а серийный — на 2016[34].
В начале 2017 года выпуск 10 нм составлял около 1 % от продукции TSMC[35]
7 нм
В 2018 году на фабриках TSMC началось производство мобильных процессоров Apple A12[39], Kirin 980[40] а также Snapdragon 855[41]. Производство 7-нм процессоров на архитектуре x86 задерживается, первые образцы на данной архитектуре появляются не раньше 2019 года. Согласно интернет-изданию Russian Tom’s Hardware Guide, с помощью первого поколения 7-нм техпроцесса TSMC может разместить 66 миллионов транзисторов на квадратном миллиметре, в то же время с помощью 10-нм техпроцесса Intel может разместить на аналогичной площади 100 миллионов транзисторов[42].
Intel при 7-нм техпроцессе[43], согласно изданию Hardwareluxx, планирует разместить 242 млн транзисторов на квадратном миллиметре[44].
- Apple A12X (с 2018)
- Zen 2 (микроархитектура) от AMD
- серверные процессоры Epyc; ожидаются в 2019 году
- десктопные процессоры Matisse от AMD; в продаже с начала июля 2019 года
- графический ускоритель Vega от AMD[45]
- RDNA (микроархитектура) от AMD
- Snapdragon 855
- Snapdragon 865
- Exynos 990
- HiSilicon Kirin 980
Переход на второе поколение[прояснить] 7-нм техпроцесса у TSMC состоялся в 2019 году. Первым массовым продуктом, произведённым по этому техпроцессу, стал Apple A13.
- новое поколение 8-ядерных APU Ryzen 4000 (кодовое имя Renoir) от AMD[46][47]
6 нм / 5 нм
16 апреля 2019 года компания TSMC анонсировала освоение технологического процесса 6-нм в рисковом производстве, что позволяет повысить плотность упаковки элементов микросхем на 18 %, данный техпроцесс является более дешёвой альтернативной техпроцессу 5 нм, он позволяет легко масштабировать топологии, разработанные для 7 нм[48].
В первой половине 2019 года TSMC начала рисковое производство чипов по 5-нм техпроцессу.[49]; переход на эту технологию позволяет повысить плотность упаковки электронных компонентов на 80 % и повысить быстродействие на 15 %[50]. Согласно China Renaissance, техпроцесс TSMC N5 включает в себя 170 миллионов транзисторов на квадратный миллиметр[51].
Samsung в марте 2017 года презентовал дорожную карту по выпуску процессоров по 7- и 5-нм технологиям. В ходе презентации вице-президент Samsung по технологии Хо-Кью Кан отметил, что многие производители столкнулись с проблемой при разработке технологий меньше 10 нм. Однако Samsung справилась с задачей, ключом к которой стало использование полевого транзистора с «кольцевым» затвором (GAAFET). Эти транзисторы позволят компании продолжить уменьшать элементы до размера 7 и 5 нм. Для изготовления пластин компания применит технологию экстремальной ультрафиолетовой литографии (EUV)[52]. В 2020 году Samsung начал массовое производство 5-нм чипов[53]. Плотность техпроцесса Samsung 5LPE при этом составила 125—130 миллионов транзисторов на квадратный миллиметр[51].
Первым массовым продуктом, произведённым по 5-нм техпроцессу, стал Apple A14, представленный в сентябре 2020 года. За ним, в ноябре 2020, был представлен процессор Apple M1, предназначенный для компьютеров линейки Macintosh.
3 нм
Исследовательский центр ИМЕК (Бельгия) и компания Cadence Design Systems создали технологию и в начале 2018 года выпустили первые пробные образцы микропроцессоров по технологии 3 нм[54].
По данным TSMC, у которой 3-нанометровоя топология появилась в конце 2020 г., переход на него позволит нарастить производительность процессоров на 10-15 % в сравнении с нынешними 5-нанометровыми чипами, а их энергопотребление снизится на 25-30 %.[55]
Samsung была намерена к 2021 году начать производство 3-нанометровой продукции с использованием технологии GAAFET[56][57].
Intel в сотрудничестве с TSMC намеревается в начале 2023 г. выпустить свой первый 3-нанометровый процессор (у Intel есть проект дизайна как минимум двух 3-нанометровых чипов, один из них ориентирован на ноутбуки, а второй предназначен для использования в серверах). Также, к переходу на 3 нм готовится и Apple – совершить его она планирует весной 2022 г. с выходом новой модификации планшета iPad Pro.[55]
См. также
- Полупроводниковая пластина
- Подложка
- Микротехнология
- Нанотехнология
- Международный план по развитию полупроводниковой технологии (ITRS) — набор плановых документов мировых лидеров полупроводниковой промышленности, для международного планирования производства, исследований и соответствия технологий и техпроцессов в рамках индустрии.
- Тик-так (стратегия)
- Список микроэлектронных производств
- List of semiconductor scale examples
Примечания
-
В качестве средств индивидуальной защиты применяют спецодежду, изготовленную из металлизированной ткани (комбинезоны, халаты, передники, куртки с капюшонами и вмонтированными в них защитными очками)
— Городилин В. М., Городилин В. В. § 21. Излучения, их действия на окружающую среду и меры борьбы за экологию. // Регулировка радиоаппаратуры. — Издание четвёртое, исправленное и дополненное. — М.: Высшая школа, 1992. — С. 79. — ISBN 5-06-000881-9. - Миниатюрность и чистота (недоступная ссылка). Дата обращения: 17 ноября 2010. Архивировано 5 августа 2013 года.
- Intel Museum — From Sand to Circuits
- H. Iwai. Roadmap for 22 nm and beyond (англ.) // Microelectronic Engineering. — Elsevier, 2009. — Vol. 86, iss. 7—9. — P. 1520—1528. — doi:10.1016/j.mee.2009.03.129. Архивировано 23 сентября 2015 года.; slides
- What does '45-nm' mean, anyway? // EDN, October 22, 2007 "The result was that by about 350 nm (actually called 0.35 micron in those days), the «350 nm» had become simply the name of the process rather than a measure of any physical dimension. "
- Semiconductor Design Technology and System Drivers Roadmap: Process and Status — Part 3 Архивная копия от 2 апреля 2015 на Wayback Machine, 2013: «ITRS MPU driver model ..scaled the number of logic transistors .. by 2× per technology node. Since dimensions shrink by 0,7× per node, and nominal layout density therefore doubles, this simple scaling model allows die size to remain constant across technology nodes.»
- Scotten Jones. Who Will Lead at 10nm?, SemiWiki (29 сентября 2014). Дата обращения 27 октября 2015.
- PRESS KIT — First 45nm Chips: Eco-Friendly. Faster. ‘Cooler’.
- Intel Demonstrates High-k + Metal Gate Transistor Breakthrough on 45 nm Microprocessors
- Intel 32nm Logic Technology (англ.)
- процессоры Intel по 32-нм технологии (недоступная ссылка). Дата обращения: 6 июня 2010. Архивировано 30 марта 2010 года.
- New Details on Intel’s Upcoming 32nm Logic Technology (англ.)
- White Paper Introduction to Intel’s 32nm Process Technology (англ.)
- High Performance 32nm Logic Technology Featuring 2nd Generation High-k + Metal Gate Transistors
- TSMC преодолела сложности 40-нанометровой технологии и в этом году начнет выпуск по нормам 28 нм (недоступная ссылка). Дата обращения: 19 июня 2019. Архивировано 6 октября 2017 года.
- AMD исправляет минусы Bulldozer в архитектуре Steamroller
- Новая архитектура AMD «Steamroller» в 2014? // 3.01.2013
- МЦСТ. Новый 8-ядерный микропроцессор Эльбрус-8С.
- Восьмиядерный микропроцессор с архитектурой Эльбрус (недоступная ссылка). Архивировано 25 июня 2014 года.
- Корпорация Altera установила новый отраслевой рекорд — Программируемая вентильная матрица (FPGA) Stratix V (недоступная ссылка). Дата обращения: 29 мая 2011. Архивировано 5 марта 2016 года.
- Новости с прошедшего с 22 по 24 сентября в Сан-Франциско Форума Intel для разработчиков (Intel Developer Forum, IDF) (недоступная ссылка)
- The Rosetta Stone of Lithography, 2013-11-20, по материалам Lars Leibmann, The Escalating Design Impact of Resolution-Challenged Lithography. ICCAD 2013
- IBM, AMD и Toshiba продемонстрировали первую 22-нм ячейку памяти SRAM (недоступная ссылка)
- IBM и AMD продемонстрируют 22 нм ячейку памяти (недоступная ссылка). Дата обращения: 7 июня 2010. Архивировано 5 марта 2016 года.
- Intel Developer Forum 22nm News Facts
- // digitimes.com
- Samsung будет выпускать процессоры для Apple по нормам 14 нм. Архивировано 5 июля 2017 года. // iXBT.com
- TSMC начнёт 16 нм производство в 1 квартале 2015 года // nvworld.ru
- V. Singh. EUV: The Computational Landscape EUVL Workshop, 2014 «ILT+SMO are used to sharpen the image of critical masks for 14nm and 10nm nodes»
- Intel начинает продажи 14-нм процессоров Celeron N3000, N3050, N3150 и Pentium N3700 (Braswell) // itc.ua, 1.04.2015
- UMC присоединится к IBM в разработке 10-нм техпроцесса
- Просочившийся слайд Intel указывает на 10-нм техпроцесс в 2018 году // 3DNews
- 10-нанометровые процессоры Intel все же появятся в этом году, но в очень ограниченном количестве // IXBT.com, окт 2017
- В будущем году TSMC планирует начать пробный, а в 2016 году — серийный выпуск продукции по нормам 10 нм Архивная копия от 10 февраля 2019 на Wayback Machine // IXBT.com
- // eetimes.com
- // eetimes.com
- 10-нанометровые процессоры Intel Ice Lake могут задержаться до 2020 года (тот факт, что у Intel не срослось с 10-нанометровым техпроцессом, уже давно не является секретом) // IXBT.com, 18 сентября 2018
- Технические характеристики Snapdragon 845 | AndroidLime . androidlime.ru. Дата обращения: 23 мая 2018.
- Началось производство процессоров Apple A12 для новых iPhone (рус.), Wylsacom (23 мая 2018). Дата обращения 1 августа 2018.
- Huawei запустила производство процессора Kirin 980 для Mate 20, P30 и других смартфонов (рус.), AKKet (8 апреля 2018). Дата обращения 1 августа 2018.
- Snapdragon 855 запущен в массовое производство (рус.), android-1.com. Дата обращения 1 августа 2018.
- AMD Ryzen 3000: всё, что вам нужно знать о ЦП нового поколения . THG.ru (5 февраля 2019). Дата обращения: 7 марта 2019. Архивировано 7 марта 2019 года.
- График выхода 7-нм продуктов Intel в 2022 году будет достаточно плотным // 3DNews, 11.12.2019
- Андрей Шиллинг. Сравнение техпроцессов: TSMC 5 нм, Intel 10 нм и GloFo 7 нм . «Hardwareluxx» (18 мая 2018). Дата обращения: 10 сентября 2019. Архивировано 9 марта 2019 года.
- AMD: первые такие CPU выйдут только в следующем году // IXBT.com, ноябрь 2018
- AMD готовится к захвату рынка ноутбуков с помощью 7-нм APU Ryzen 4000 // 3DNews, 16.03.2020
- AMD Zen 3 CPUs Deliver New Architecture, Significant IPC Gains & More (англ.). Дата обращения: 14 января 2020.
- TSMC Unveils 6-nanometer Process (англ.). TSMC. Дата обращения: 18 апреля 2019.
- TSMC завершила разработку 5-нм техпроцесса — началось рисковое производство . 3DNews. Дата обращения: 10 апреля 2019.
- TSMC and OIP Ecosystem Partners Deliver Industry’s First Complete Design Infrastructure for 5nm Process Technology (англ.). TSMC. Дата обращения: 18 апреля 2019.
- Константин Ходаковский. TSMC рассказала о перспективных техпроцессах: 2 нм — в разработке, 3 нм и 4 нм — на пути к производству в 2022 году . 3dnews.ru (27 апреля 2021). Дата обращения: 28 апреля 2021. Архивировано 28 апреля 2021 года.
- Samsung ramping up to 7nm next year // fudzilla.com
- Алексей Разин. Samsung приступила к массовому производству 5-нм чипов и готовится предложить 4-нм . 3dnews.ru (2 ноября 2020). Дата обращения: 28 апреля 2021. Архивировано 7 ноября 2020 года.
- Imec and Cadence Tape Out Industry’s First 3nm Test Chip
- Intel совершает рекордный скачок технологий. Она перейдет от 10-нм чипов к суперсовременным 3-нм // CNews, 2 Июля 2021
- Samsung планирует начать массовое производство по 3-нм техпроцессу в 2021 году . 3DNews - Daily Digital Digest. Дата обращения: 10 апреля 2019.
- Samsung Plans Mass Production of 3nm GAAFET Chips in 2021 (англ.). Tom's Hardware (11 января 2019). Дата обращения: 18 января 2019.
- https://www.cnews.ru/news/top/2021-05-06_sozdan_pervyj_v_mire_protsessor . cnews.ru.
- Dr. Ian Cutress. IBM Creates First 2nm Chip . anandtech.
- Mark Tyson. Intel Senior Fellow predicts bright future for Moore’s Law // Hexus, 12 декабря 2019 года. (англ.)
Литература
- Готра З. Ю. Справочник по технологии микроэлектронных устройств. — Львов: Каменяр, 1986. — 287 с.
- Бер А. Ю., Минскер Ф. Е. Сборка полупроводниковых приборов и интегральных микросхем. — М.: «Высшая школа», 1986. — 279 с.
- Пирс К., Адамс А., Кац Л. Технология СБИС. В 2-х кн. — М.: Мир, 1986. — 404 с.
- Ханке Х. И., Фабиан Х. Технология производства радиоэлектронной аппаратуры. — М.: Энергия, 1980. — 463 с.
- Бушминский И. П., Морозов Г. В. Технологическое проектирование микросхем СВЧ. — М.: МГТУ, 2001. — 356 с. — ISBN 5-7038-1687-4.
Ссылки
- Тасит Мурки. Закон Мура против нанометров. Всё, что вы хотели знать о микроэлектронике, но почему-то не узнали… // ixbt.com, 2 ноября 2011
- Список техпроцессов (англ.) (недоступная ссылка). IC Knowledge Llc (ноябрь 2015). Дата обращения: 23 ноября 2015. Архивировано 24 ноября 2015 года.