Теорема Холево

Теорема Холево — важная ограничивающая теорема в области квантовых вычислений, междисциплинарной области физики и информатики. Её иногда называют границей Холево, поскольку теорема устанавливает верхнюю границу на количество информации, которую можно узнать о квантовом состоянии (доступная информация). Теорему опубликовал Александр Семёнович Холево в 1973 году.

Вводная информация

Как и для других концепций квантовой теории информации, понять суть вопроса легче на примере общения двух людей. Пусть у нас есть Алиса и Боб. У Алисы есть классическая случайная величина X, которая может принимать значения {1, 2, …, n} с соответствующими вероятностями . Алиса подготавливает квантовое состояние, представленное матрицей плотности , выбранной из множества , и передаёт это состояние Бобу. Целью Боба является поиск значения X, которое осуществляется через измерение состояния , что даёт классический результат, обозначаемый через Y. В этом контексте количество доступной информации, то есть, количество информации, которую Боб может получить посредством переменной X, является максимальным значением взаимной информации I(X:Y) между случайными переменными X и Y по всем возможным измерениям, которые Боб может сделать[1].

В настоящее время не известно формулы вычисления доступной информации. Имеется, однако, несколько верхних границ, из которых наиболее известна граница Холево, которая выражается следующей теоремой[1].

Утверждение теоремы

Пусть будет множеством смешанных состояний и пусть будет одним из этих состояний, извлечённым согласно распределению вероятности .

Теперь для любого измерения, описываемого элементами POVM (англ. positive operator-valued measure, положительная операторная мера) и осуществлённого на , количество доступной информации от переменной X в виде результата измерения Y ограничен сверху следующим образом:

где  ; является энтропией фон Неймана.

Величина в правой части неравенства называется информацией Холево или величина χ Холево:

.

Доказательство

Для доказательства рассмотрим три квантовые системы с именами . При этом рассматривается как подготовка,  — как квантовое состояние, подготовленное Алисой и переданное Бобу, а  — как средства измерения полученной информации Боба.

Сложная система в начале находится в состоянии

Состояние Алисы можно рассматривать так, как если бы Алиса имела значение для случайной переменной . Тогда состояние подготовки является смешанным состоянием, описываемым матрицей плотности , квантовое состояние, переданное Бобу, равно , а средства измерения Боба находятся в их начальном или холостом состоянии .

Используя известные результаты квантовой теории информации[какие?] можно показать[как?], что

Также после некоторых алгебраических выкладок можно показать[как?], что это эквивалентно утверждению теоремы[1].

Замечания

По существу, граница Холево доказывает, что для n кубит, хотя они могут «нести» большее количество (классической) информации благодаря квантовой суперпозиции, количество классической информации, которую можно извлечь, то есть получить на практике, не превышает n классических (то есть не закодированных квантово) бит. Это удивительно по двум причинам:

  1. квантовые вычисления часто настолько более мощные по сравнению с обычными вычислениями, что результаты, показывающие, что они лишь незначительно лучше, или даже хуже обычных техник, выглядят странно;
  2. требуется комплексных чисел для кодирования кубита, который представляет лишь n бит.

См. также

Примечания

Литература

  • Холево А.С. Границы количества информации, передаваемой по квантовому каналу связи // Проблемы передачи информации. — 1973. Т. 9. С. 177—183.
  • Michael A. Nielsen, Isaac L. Chuang. секция 12.1.1 - уравнение (12.6) // Quantum Computation and Quantum Information (англ.). — Cambridge, UK: Cambridge University Press, 2000. — P. 531. — ISBN 978-0-521-63235-5.
  • Mark M. Wilde (2011), From Classical to Quantum Shannon Theory, arΧiv:1106.1445v2 [quant-ph]
См. секцию 11.6. Теорема Холево представлена как упражнение 11.9.1 на странице 288.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.