Область главных идеалов
Область главных идеалов — это область целостности, в которой любой идеал является главным. Более общее понятие — кольцо главных идеалов, от которого не требуется целостности (однако некоторые авторы, например Бурбаки, ссылаются на кольцо главных идеалов как на целостное кольцо).
Элементы кольца главных идеалов в некотором смысле похожи на числа: для любого элемента существует единственное разложение на простые, для любых двух элементов существует наибольший общий делитель.
Области главных идеалов можно указать на следующей цепочке включений:
- Коммутативные кольца ⊃ Области целостности ⊃ Факториальные кольца ⊃ Области главных идеалов ⊃ Евклидовы кольца ⊃ Поля
Кроме того, все области главных идеалов являются нётеровыми и дедекиндовыми кольцами.
Примеры
- Кольцо целых чисел
- Кольцо многочленов над полем k — k[x], а также кольцо формальных степенных рядов
- Z[i] — кольцо гауссовых целых чисел
- Кольцо целых чисел Эйзенштейна
Примеры целостных колец, не являющихся кольцами главных идеалов:
- Z[x] — кольцо многочленов с целыми коэффициентами (идеал (2, x) нельзя породить одним многочленом)
- Кольцо многочленов от двух переменных k[x, y] (идеал (x, y) не является главным)
Модули
Основной результат здесь — следующая теорема: если R — область главных идеалов и M — конечнопорожденный модуль над R, то M разлагается в прямую сумму циклических модулей, то есть модулей, порожденных одним элементом. Поскольку существует сюръективный гомоморфизм из R в циклический модуль над ним (отправляющий единицу в генератор), по теореме о гомоморфизме любой циклический модуль имеет вид для некоторого .
В частности, любой подмодуль свободного модуля над областью главных идеалов свободен. Это неверно для произвольных колец, в качестве контрпримера можно привести вложение -модулей .
См. также
Литература
- Зарисский О., Самуэль П. Коммутативная алгебра тт.1-2. — М: ИЛ, 1963
- Michiel Hazewinkel, Nadiya Gubareni, V. V. Kirichenko. Algebras, rings and modules. Kluwer Academic Publishers, 2004. ISBN 1-4020-2690-0
- Nathan Jacobson. Basic Algebra I. Dover, 2009. ISBN 978-0-486-47189-1