Кригинг
В статистике, первоначально в геостатистике, кригинг или регрессия на основе гауссовских процессов — это метод интерполяции, для которого интерполированные значения моделируются гауссовским процессом, определяемым предыдущими ковариациями, в отличие от кусочно-полиномиального сплайна, оптимизирующего гладкость интерполируемых значений. Данный интерполяционный метод назван в честь южноафриканского горного инженера Дэниела Крига, занимавшегося ручным созданием геологических карт по ограниченному набору данных в некоторой области. Это вид обобщённой линейной регрессии, использующий статистические параметры для нахождения оптимальной оценки в смысле минимального среднеквадратического отклонения при построении поверхностей, кубов и карт. В основу метода положен принцип несмещённости среднего; то есть взятые все вместе значения на карте должны иметь правильное среднее значение. Глобальная несмещённость формально обеспечивается за счёт повышения низких значений и уменьшения высоких.
При правильных выбранных априорных предположениях кригинг даёт наилучшее линейное несмещённое предсказание промежуточных значений. Методы интерполяции, основанные на других критериях, таких как гладкость, не должны давать наиболее вероятных значений в промежуточных точках. Этот метод широко используется в области пространственного анализа и компьютерных (численных) экспериментах. Этот метод также известен как Wiener–Kolmogorov prediction в честь Норберта Винера и Андрея Николаевича Колмогорова.
С точки зрения общей статистики кригинг заключается в минимизации дисперсии ошибки измерения, которая является функцией от измеряемых весов. Минимизация данной дисперсии уменьшает среднюю квадратическую ошибку отклонения оцененного значения от возможного. Достигается это путём приравнивания к нулю первой производной ошибки относительно каждого неизвестного веса. В итоге выводится система уравнений, решением которой является вектор весов.
Кригинг выполняет две группы задач:
- количественное определение пространственной структуры данных,
- создание прогноза.
Количественное представление пространственной структуры данных, известное как построение вариограмм, даёт возможность пользователям подобрать к данным модель пространственной зависимости. Для расчёта (прогноза) неизвестного значения переменной в заданном месте кригинг будет использовать подходящую (подобранную) модель вариограммы, конфигурацию пространственных данных и значения в точках измерений вокруг данного местоположения.
Литература
- Байков В., Бакиров Н., Яковлев А. Математическая геология. — 1-е изд. — Ижевск: Институт компьютерных исследований, 2012. — Т. I. — С. 227. — ISBN 978-5-4344-0053-4.