Девятая проблема Гильберта

Девятая проблема Гильберта — одна из 23 проблем Гильберта, которые Давид Гильберт высказал в 1900 году на II Международном конгрессе математиков в Париже и которые оказали исключительное влияние на развитие математики в XX веке.

Проблема была частично решена Эмилем Артином доказательством закона взаимности Артина для абелевых расширений алгебраических числовых полей[1][2]. Позже в 1948 году И. Р. Шафаревичем был найден самый общий закон взаимности степенных вычетов в полях алгебраических чисел[3][4].

В неабелевом случае, проблема по-прежнему не решена.

Формулировка

9. Доказательство общего закона взаимности в любом числовом поле.

<…> Требуется доказать закон взаимности для степенных вычетов l-го порядка в любом числовом поле, l — нечётное простое число и если l есть целая степень числа 2. <…>[5]

Источники

  1. Emil Artin. Beweis des allgemeinen Reziprozitätsgesetzes // Abh. Math. Semin. Univ. Hamburg. — 1927. Т. 5. С. 131—141.
  2. Emil Artin. Idealklassen in Oberkörpern und allgemeines Reziprozitätsgesetzes // Abh. Math. Semin. Univ. Hamburg. — 1930. Т. 7. С. 159—164.
  3. И.Р. Шафаревич. Общий закон взаимности // УМН. — 1948. Т. 3, № 3. С. 165.
  4. И.Р. Шафаревич. Общий закон взаимности и его приложения в теории полей алгебраических чисел // Тр. I Конгр. венгерских математиков. — Будапешт, 1952. С. 291—298.
  5. Перевод доклада Гильберта с немецкого — М. Г. Шестопал и А. В. Дорофеева, опубликован в книге Проблемы Гильберта / под ред. П. С. Александрова. М.: Наука, 1969. — С. 39. — 240 с. 10 700 экз. Архивированная копия (недоступная ссылка). Дата обращения: 4 января 2012. Архивировано 17 октября 2011 года.
  6. David Hilbert. Vortrag, gehalten auf dem internationalen Mathematiker-Kongreß zu Paris 1900 (нем.). — Текст доклада, прочитанного Гильбертом 8 августа 1900 года на II Международном конгрессе математиков в Париже. Дата обращения: 27 августа 2009. Архивировано 8 апреля 2012 года.

См. также

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.