Вынужденные колебания
Вынужденные колебания — колебания, происходящие под воздействием внешних периодических сил.
Автоколебания отличаются от вынужденных колебаний тем, что последние вызваны периодическим внешним воздействием и происходят с частотой этого воздействия, в то время как возникновение автоколебаний и их частота определяются внутренними свойствами самой автоколебательной системы.
Наиболее простой и содержательный пример вынужденных колебаний можно получить из рассмотрения гармонического осциллятора и вынуждающей силы, которая изменяется по закону: .
Вынужденные колебания гармонического осциллятора
Консервативный гармонический осциллятор
Второй закон Ньютона для такого осциллятора запишется в виде: . Если ввести обозначения: и заменить ускорение на вторую производную от координаты по времени, то получим следующее обыкновенное дифференциальное уравнение:
Решением этого уравнения будет сумма общего решения однородного уравнения и частного решения неоднородного. Общее решение однородного уравнения было уже получено здесь и оно имеет вид:
- ,
где — произвольные постоянные, которые определяются из начальных условий.
Найдём частное решение. Для этого подставим в уравнение решение вида: и получим значение для константы:
Тогда окончательное решение запишется в виде:
Резонанс
Из решения видно, что при частоте вынуждающей силы, равной частоте свободных колебаний, оно не пригодно — возникает резонанс, то есть «неограниченный» линейный рост амплитуды со временем. Из курса математического анализа известно, что решение в этом случае надо искать в виде: . Подставим этот анзац в дифференциальное уравнение и получим, что
Таким образом, колебания в резонансе будут описываться следующим соотношением:
Затухающий гармонический осциллятор
Второй закон Ньютона:
- .
Переобозначения:
Дифференциальное уравнение:
Его решение будет строиться, как сумма решений однородного уравнения и частного решения неоднородного. Анализ однородного уравнения приведён здесь. Получим и проанализируем частное решение.
Запишем вынуждающую силу следующим образом: , тогда решение будем искать в виде: , где . Подставим это решение в уравнение и найдём выражение для :
где
Полное решение имеет вид:
- ,
где — собственная частота затухающих колебаний.
Константы и в каждом из случаев определяются из начальных условий:
В этом случае, в отличие от осциллятора без трения, амплитуда колебаний в резонансе имеет конечную величину.
Если мы рассмотрим устоявший процесс, то есть ситуацию при , то решение однородного уравнения будет стремиться к нулю и останется только частное решение:
Это означает, что при система «забывает» начальные условия, и характер колебаний зависит только от вынуждающей силы.
Работа, совершаемая вынуждающей силой за время , равна , а мощность . Из уравнения
следует, что
Если учесть, что при установившихся вынужденных колебаниях
то тогда средняя за период мощность:
Работа за период
Литература
- Бутиков Е.И. Собственные колебания линейного осциллятора. Учебное пособие . Архивировано 11 марта 2012 года.
- Рабинович М.И., Трубецков Д.И. Введение в теорию колебаний и волн.