Большая восковая моль
Большая восковая моль, или огнёвка пчелиная[3] (лат. Galleria mellonella), — вид молевидных бабочек из семейства настоящих огнёвок (Pyralidae). Вредитель медоносных пчёл[4]. Встречаются всюду, где развито пчеловодство. Восковой молью также называют малую восковую моль (Achroia grisella)[3][5].
Большая восковая моль | ||||||||
---|---|---|---|---|---|---|---|---|
| ||||||||
Научная классификация | ||||||||
Домен: Царство: Подцарство: Без ранга: Без ранга: Без ранга: Без ранга: Тип: Подтип: Надкласс: Класс: Подкласс: Инфракласс: Надотряд: Отряд: Подотряд: Инфраотряд: Клада: Клада: Apoditrysia Клада: Obtectomera Надсемейство: Семейство: Подсемейство: Триба: Galleriini Род: Galleria Вид: Большая восковая моль |
||||||||
Международное научное название | ||||||||
Galleria mellonella (Linnaeus, 1758) | ||||||||
Синонимы | ||||||||
|
Описание
Длина 18—38 мм. Передние крылья коричнево-сероватые с коричнево-жёлтым задним краем и тёмными пятнами. Задние крылья светлее. Распространены всесветно. Гусеницы живут в ульях медоносных пчёл, где питаются воском[5]. Взрослые бабочки не питаются; у них недоразвиты ротовые органы и органы пищеварения. Яйца имеют беловатый цвет и размер 0,35 на 0,5 мм, развиваются 5—8 суток. Из них выходит личинка длиной 1 мм с желтоватой головой и 8 ногами. Позднее они вырастают в гусениц длиной до 18 мм с буроватой головой. За весь период своего развития одна личинка моли может повредить сотни пчелиных ячеек. Через 25—30 суток гусеницы окукливаются, для чего находят трещину или щель, а иногда выгрызают ямку. Куколки в ходе созревания меняются в окраске с жёлтого на коричневый (их длина у самок — около 16 мм, а самцов — 14 мм). Взрослые бабочки живут 7—12 дней (самки) и 10—26 (самцы)[6].
Взаимоотношения с человеком
Вред для пчеловодства
В начале развития гусеница моли питается мёдом и пергой. Далее она переходит к питанию восковыми сотами, смешанными с остатками коконов. Поедая воск, повреждает пчелиные соты и покрывает ходы шёлком. Гусеницы повреждают не только восковые соты, но и расплод, запасы мёда, пергу, рамки и утеплительный материал ульев. При сильном заражении гусеницы поедают друг друга и помёт предыдущих поколений. Пчелиные семьи слабеют и могут погибнуть или покинуть улей[6].
Поедание полиэтилена
В апреле 2017 года исследователи из Испании и Великобритании опубликовали статью в журнале «Current Biology», в которой доказывали, что гусеницы большой восковой моли способны разлагать полиэтиленовые пакеты. В эксперименте, когда гусениц оставили наедине с пакетом, дыры в нём стали появляться через 40 минут. Примерно за 12 часов около 100 гусениц съели 92 миллиграмма пластика. Согласно выводам авторов, они не только разгрызают полиэтилен, но и расщепляют его химически: на пластик действует даже гомогенат из гусениц, и при этом образуется этиленгликоль. Неясно, вырабатывает ли нужные ферменты сама гусеница или микрофлора её пищеварительной системы[7][8][9]. Ранее способность поедать полиэтилен и расщеплять его с помощью бактерий была обнаружена у гусениц бабочки Plodia interpunctella из того же семейства[10].
В августе 2017 года в том же журнале была опубликована статья исследователей из Германии, которые поставили под сомнение (хотя и не исключили) химическое расщепление полиэтилена гусеницами: по их данным, обнаружение этиленгликоля было результатом некорректной интерпретации инфракрасного спектра[11]. Авторы первой статьи согласились, что необходимы дальнейшие исследования[12].
В медицине
Спиртовые экстракты из гусениц используются в народной медицине и в качестве БАД. Одни из первых научных исследований свойств вытяжек из гусениц большой восковой моли проводил русский ученый И. И. Мечников. Работая в Парижском институте Пастера в 1889 году, он проводил поиск новых средств для лечения туберкулеза. Им было сделано предположение, что пищеварительные ферменты липаза и церраза из пищеварительного тракта гусениц большой восковой моли, возможно, могут разрушать оболочку микобактерий. В ходе проведенных исследований его предположения подтвердились. В России в дальнейшем исследования продолжились С. И. Метальниковым и микробиологом И. С. Златогоровым. Они подтвердили гипотезу И. И. Мечникова. Ферменты липаза и церраза способны растворять капсулу туберкулезной палочки[13]. Дальнейшие работы были прерваны событиями октябрьской революции и возобновлены в 1930-х годах[14].
Гусеницы могут служить сырьем для добывания хитина и хитозана[15]
В исследованиях
Большую восковую моль разводят в лабораторных условиях как модельный объект для физиологических и биохимических исследований, тест-объект для оценки активности и качества бактериальных препаратов, а также как кормовой объект или хозяина для хищных клопов, мух-тахин, трихограмм и др[16].
Гусеницы используются в качестве модельного организма для испытаний токсикологии и патогенности in vivo, заменяя использование мелких млекопитающих в таких экспериментах[17].
Гусеницы также являются подходящими моделями для изучения врождённого иммунитета. В генетике их можно использовать для изучения наследственного бесплодия. Большая восковая моль продуцирует несколько белков плазмы, которые служат в качестве опсонинов, которые распознают и связываются с консервативными микробными компонентами, сходными с рецепторами распознавания у млекопитающих[18]. Применение гусениц большой восковой моли в исследованиях антимикробной активности лекарственных средств охватывает широкий спектр микроорганизмов[19].
Эксперименты с инфицированными гусеницами подтверждают гипотезу о том, что бактериальный стилбеноид 3,5-дигидрокси-4-изопропил-транс-стильбен обладает антибиотическими свойствами, которые помогают минимизировать конкуренцию со стороны других микроорганизмов и предотвращают гниение трупа насекомых, зараженного энтомопатогенной нематодой Heterorhabditis, являющейся в свою очередь хозяином для бактерии Photorhabdus[20].
Австрийскими учеными в 2016 году было проведено исследование о возможности использования гусениц в качестве модели беспозвоночных для изучения патогенности у определенных видов грибов[21].
Методы борьбы
Из естественных врагов для борьбы с восковой молью используют бактериальные препараты (Bacillus thuringiensis, Bacillaceae; Pseudomonas aeruginosa), нематод Heterorhabditis bacteriophora (Heterorhabditidae), перепончатокрылых наездников-яйцеедов трихограммы (Trichogramma), Apanteles galleriae (бракониды), мух Archytas marmoratus (тахины)[22].
- Вид сбоку
- Вид снизу
- Вид сверху
- Голова личинки
Ссылки
- Galleria mellonella (Linnaeus, 1758) Огнёвка пчелиная - Бабочки Крыма
- Galleria mellonella (Linnaeus, 1758). Lepidoptera Larvae of Australia. (англ.) (Дата обращения: 5 января 2012)
- Моль восковая большая (Galleria mellonella) (рус.) (Дата обращения: 5 января 2012)
- Galleria mellonella. (англ.) (Дата обращения: 5 января 2012)
- Wax Moth on UKmoths
- Galleria mellonella (Linnaeus, 1758). (англ.) (Дата обращения: 5 января 2012)
- Galleria mellonella (Linnaeus, 1758). Moths and Butterflies of Europe and North Africa. (англ.) (Дата обращения: 5 января 2012)
См. также
Примечания
- Galleria mellonella (Linnaeus 1758). Fauna Europaea
- Thomas Kaltenbach, Peter Victor Küppers: Kleinschmetterlinge. Verlag J. Neudamm-Neudamm, Melsungen 1987, ISBN 3-788-80510-2
- Стриганова Б. Р., Захаров А. А. Пятиязычный словарь названий животных: Насекомые (латинский-русский-английский-немецкий-французский) / Под ред. д-ра биол. наук, проф. Б. Р. Стригановой. — М.: РУССО, 2000. — 560 с. — 1060 экз. — ISBN 5-88721-162-8.
- Акимушкин И. И. Мир животных. — М.: Мысль, 1993. — Т. 3. — ISBN 5-244-00444-1.
- Определитель насекомых Дальнего Востока России. Т. V. Ручейники и чешуекрылые. Ч. 2 / под общ. ред. П. А. Лера. — Владивосток: Дальнаука, 1999. — С. 320—443 (423). — 671 с. — ISBN 5-7442-0910-7.
- Хисматуллина Н. З. Апитерапия. — Пермь: Мобиле, 2005. — С. 71—76. — 296 с. — 10 000 экз. — ISBN 5-88187-263-0.
- Bombelli Paolo, Howe Christopher J., Bertocchini Federica. Polyethylene bio-degradation by caterpillars of the wax moth Galleria mellonella // Current Biology. — 2017. — Апрель (т. 27, № 8). — С. R292—R293. — ISSN 0960-9822. — doi:10.1016/j.cub.2017.02.060.
- Учёные обнаружили гусениц, способных поедать полиэтилен . Аргументы и факты (24 апреля 2017). Дата обращения: 25 апреля 2017.
- Русакова Е. Гусеницы приспособились к скоростному перевариванию полиэтилена . Интернет-издание N+1 (25 апреля 2017). Дата обращения: 25 апреля 2017.
- Yang J., Yang Y., Wu W.M., Zhao J., Jiang L. Evidence of Polyethylene Biodegradation by Bacterial Strains from the Guts of Plastic-Eating Waxworms (англ.) // Environmental Science & Technology : journal. — American Chemical Society, 2014. — Vol. 48, no. 23. — P. 13776—13784. — doi:10.1021/es504038a. — PMID 25384056.
- Weber C. et al. Polyethylene bio-degradation by caterpillars? (англ.) // Current Biology. — Cell Press, 2017. — August (vol. 27, no. 15). — P. R744—R745. — doi:10.1016/j.cub.2017.07.004.
- Bombelli P. et al. Response to Weber et al. (англ.) // Current Biology. — Cell Press, 2017. — August (vol. 27, no. 15). — P. R745. — doi:10.1016/j.cub.2017.07.005.
- S. I. Metalnikov. L'immunite naturelle et acquise ches la chenille de Galleria mellonella (январь 1920).
- Т.И. Ульянкина. Сергей Иванович Метальников (1870–1946) (к 140-летию со дня рождения) . Цитокины и воспаление. (Номер 4'2010).
- Останина Е.С., Лопатин С.А., Варламов В.П. Получение хитина и хитозана из восковой моли Galleria Mellonella - Биотехнология 2007, 3, 38-45
- Кузнецова Ю. И. Цели и методы разведения вощинной моли (Galleria mellonella L.).// Ю. И. Кузнецова. // Массовое разведение насекомых. — Кишинев. — 1981. — С. 26-30
- Harding, C. R.; Schroeder, G. N.; Collins, J. W.; Frankel, G. Use of Galleria mellonella as a Model Organism to Study Legionella pneumophila Infection (англ.) // Journal of Visualized Experiments : journal. — 2013. — No. 81. — P. e50964. — doi:10.3791/50964. — PMID 24299965.
- Гайдай Д. С., Гайдай Е. А., Макарова М.Н Личинки большой восковой моли (Galleria mellonella) как модельный объект для исследования новых лекарственных средств.
- Tsai, CJ. Galleria mellonclla infection models for the study of bacterial diseases and for antimicrobial drug testing / C.J. Tsai, J.M. Loh, T. Proft // VIRULENCE. −2016. -Vol.7. -№ 3. -P.214-229.
- Hu, K; Webster, J. M. Antibiotic production in relation to bacterial growth and nematode development in Photorhabdus--Heterorhabditis infected Galleria mellonella larvae (англ.) // FEMS Microbiology Letters : journal. — 2000. — Vol. 189, no. 2. — P. 219—223. — doi:10.1111/j.1574-6968.2000.tb09234.x. — PMID 10930742.
- Binder U, Maurer E, Lass-Flörl C. Galleria mellonella: An invertebrate model to study pathogenicity in correctly defined fungal species. .
- Galleria mellonella (Linnaeus, 1758) Архивная копия от 16 апреля 2011 на Wayback Machine. Lepidoptera Larvae of Australia. (англ.) (Дата обращения: 5 января 2012)