Аксиоматическая квантовая теория поля

Аксиоматическая квантовая теория поля — подход в квантовой теории поля, основанный на использовании физических аксиом, сформулированных в строгой математической форме.

Его достоинством является то, что он позволяет дедуктивным методом, в качестве следствий соответствующих теорем (например, теоремы о связи спина со статистикой и CPT-теоремы[1]), вывести наблюдаемые экспериментально физические следствия, вытекающие из физических представлений о пространстве-времени, сформулированных в виде математических аксиом и, таким образом, проверить сами эти исходные представления. Также он позволяет логически проверять и уточнять при необходимости исходные положения квантовой теории поля.

Его недостатком является то, что кроме теоремы о связи спина со статистикой и CPT-теоремы, из него не удаётся получить других конкретных, проверяемых на опыте, следствий (например, не удаётся построить теорию взаимодействующих полей а также нетривиальную теорию S-матрицы[1]).

В аксиоматической квантовой теории поля, как правило, используется квантовомеханическое представление Гейзенберга[2], в котором зависимость от времени описывается операторами, а векторы состояний не зависят от времени.

Аксиомы квантовой теории поля

Связь между математическими объектами и физическими наблюдаемыми

Состояния физической системы описываются нормированными лучами в оснащённом гильбертовом пространстве с положительно определённой метрикой. Каждой измеряемой физической величине ставится в соответствие самосопряжённый оператор . Если величине соответствует оператор , то величине соответствует оператор [3][4][5].

Релятивистская инвариантность

Средние значения физических наблюдаемых не изменяются относительно собственных преобразований Пуанкаре[2][6]. Векторы состояний преобразуются по представлениям универсальной накрывающей группы Пуанкаре (теорема Баргмана-Вигнера)[7].

Постулат локальности

Постулат локальности является выражением релятивистского принципа причинности. Измерения составляющих поля в точках, разделённых пространственно-подобным интервалом, независимы. Математически это означает, что операторы поля в точках, разделённых пространственно-подобным интервалом, либо коммутируют, либо антикоммутируют между собой[8][9][10].

при

Здесь знак коммутации «-» соответствует тензорному бозонному полю, знак антикоммутации «+» соответствует спинорному фермионному полю (теорема о связи спина со статистикой).

Принцип спектральности

Представление универсальной накрывающей группы Пуанкаре, которое реализуется в гильбертовом пространстве векторов состояния, разлагается на неприводимые представления лишь трёх классов[11][12]:

  •  — элементарные частицы с положительной массой.
  •  — все унитарные представления этого класса, кроме тождественного, бесконечномерны. Тождественное представление соответствует вакууму.

Здесь  — квадрат оператора четырёхмерного импульса,  — масса элементарной частицы,  — первая компонента оператора четырёхмерного импульса.

Нерешённые проблемы аксиоматической квантовой теории поля

  • Основная проблема аксиоматической квантовой теории поля. Неизвестна теория, удовлетворяющая всем аксиомам аксиоматической квантовой теории поля и описывающая взаимодействующие поля и нетривиальную матрицу рассеяния[13].
  • Неизвестно описание класса обобщённых функций , удовлетворяющих условию для двухточечной функции Уайтмана[14]:.

Подходы к построению аксиоматической квантовой теории поля

Существует два основных подхода, обеспечивающих точную математическую формулировку и аксиоматизируемость квантовой теории поля: алгебраический и топологический.

Функториальная квантовая теория поля (FQFT)

FQFT формализует картину Шредингера квантовой механики (обобщенной на квантовую теорию поля), где пространства квантовых состояний присваиваются пространству, и где линейные отображения присваиваются траекториям или пространственно-временной интерполяции между этими пространствами.

Примечания

  1. Боголюбов, 1969, с. 11.
  2. Боголюбов, 1969, с. 103.
  3. Боголюбов, 1969, с. 89.
  4. Стритер, 1966, с. 137.
  5. Йост, 1967, с. 82.
  6. Йост, 1967, с. 83.
  7. Боголюбов, 1969, с. 106.
  8. Боголюбов, 1969, с. 176.
  9. Стритер, 1966, с. 139.
  10. Йост, 1967, с. 85.
  11. Боголюбов, 1969, с. 112.
  12. Стритер, 1966, с. 136.
  13. Боголюбов, 1969, с. 176,213.
  14. Боголюбов, 1969, с. 190.
  15. F. Strocchi. Relativistic Quantum Mechanics and Field Theory // Foundations of Physics. — 2004-03-01. Т. 34, вып. 3. С. 501–527. ISSN 0015-9018. doi:10.1023/B:FOOP.0000019625.30165.35.

Литература

  • Боголюбов Н. Н., Логунов А. А., Тодоров И. Т. Основы аксиоматического подхода в квантовой теории поля. М.: Наука, 1969. — 424 с.
  • Стритер Р., Вайтман А. PCT, спин и статистика и всё такое. М.: Наука, 1966. — 251 с.
  • Йост Р. Общая теория квантованных полей. М.: Мир, 1967. — 236 с.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.