Ториевый топливный цикл
Ториевый топливный цикл — ядерный топливный цикл, который в качестве расщепляющегося материала использует изотоп тория Th-232. В реакторе изотоп Th-232 превращается в расщепляющийся искусственный изотоп урана U-233, который является ядерным топливом. В отличие от природного урана, природный торий содержит только следовые количества расщепляющегося материала (например, Th-231), которые недостаточны для инициации цепной ядерной реакции. Для инициализации топливного цикла в этих условиях требуются дополнительные расщепляющиеся материалы или дополнительный источник нейтронов. В ториевом реакторе Th-232 поглощает нейтроны и превращается в U-233. Этот процесс аналогичен процессам на урановых реакторах-бридерах, где изотоп урана U-238 поглощает нейтроны, образуя расщепляющийся изотоп Pu-239. В зависимости от конструкции реактора и топливного цикла, образующийся U-233 либо расщепляется на месте своего возникновения, либо химически отделяется от отработавшего ядерного топлива и используется для производства нового топлива.
Ториевый топливный цикл имеет несколько потенциальных преимуществ по сравнению с урановым топливным циклом, в том числе большая доступность тория, лучшие физические и ядерные свойства, меньшее образование плутония и актинидов, что означает лучшее соответствие режиму нераспространения ядерного оружия при использовании в традиционных легководных реакторах[1][2] (хотя это не так для реакторов на расплавах солей).[3][4]
История
Первоначальный интерес к ториевому циклу был мотивирован опасениями по поводу ограниченности мировых урановых ресурсов. Предполагалось, что по истощении запасов урана, торий будет использоваться в качестве добавки к урану в качестве расщепляемого материала. Однако, поскольку во многих странах запасы урана относительно велики, интерес к ториевому топливному циклу угас. Заметным исключением была трёхступенчатая ядерно-энергетическая программа Индии.[5] В XXI веке потенциал тория с точки зрения нераспространения ядерного оружия и снижения производства ядерных отходов привели к возобновлению интереса к ториевому топливному циклу.[6][7][8]
В 1960-х годах в Национальной лаборатории Ок-Ридж в экспериментах с реактором на расплавах солей, где в качестве топлива использовался изотоп U-233, была продемонстрирована часть ториевого топливного цикла. Эксперименты с жидкосолевым реактором (ЖСР или Molten salt reactor, МSR), необходимые для оценки возможностей тория, использовали фторид тория (IV) в виде расплава, исключая необходимость изготовления топливных элементов. Программа ЖСР была закрыта в 1976 году после того, как её покровитель Элвин Вайнберг был уволен.[9]
В 2006 году Карло Руббиа предложил концепцию энергетического усилителя (accelerator driven system, ADS), которую он рассматривал как новый и безопасный способ получения ядерной энергии с использованием существующих ускорительных технологий. Концепция Руббиа предоставляет возможность избежать накопления высокоактивных ядерных отходов, производя энергию из природного тория и обедненного урана.[10][11]
Кирк Соренсен, бывший ученый НАСА и главный технолог Flibe Energy в течение долгого времени является промоутером ториевого топливного цикла и особенно жидкосолевого реактора на фториде тория (liquid fluoride thorium reactor, LFTR). Во время работы в НАСА он впервые исследовал ториевые реакторы в качестве одного из вариантов обеспечения энергией лунных колоний. В 2006 году Соренсен основал сайт «energyfromthorium.com» для продвижения и распространения информации об этой технологии.[12]
В 2011 году в Массачусетском технологическом институте пришли к выводу, что хотя для применения ториевого топливного цикла не существует серьёзных технических препятствий, существование легководных реакторов оставляет мало стимулов для сколько-нибудь значительного проникновения этой технологии на рынок. Поэтому существует мало шансов, что ториевый цикл заменит обычный урановый на рынке атомной энергетики, несмотря на его потенциальные выгоды.[13]
Ядерные реакции тория
«Торий похож на сырые дрова, его сначала надо превратить в уран, так же как сырые дрова надо высушить, чтобы они загорелись»
В ториевом цикле ядерное топливо образуется при захвате нейтрона изотопом Th-232 (это может происходить и в реакторе на быстрых нейтронах, и в реакторе на тепловых нейтронах), при этом образуется изотоп Th-233. Последний изотоп нестабилен. Как правило, он испускает электрон и антинейтрино (ν) в процессе β−
-распада и превращается в изотоп протактиния Pa-233. Этот изотоп претерпевает ещё один β−
распад и превращается в U-233, который может быть использован в качестве топлива:
Отходы продуктов деления
В процессе ядерного деления образуются радиоактивные продукты деления, которые могут иметь периоды полураспада от нескольких дней до более чем 200 000 лет. По данным некоторых исследований,[15] ториевый цикл может полностью переработать отходы актинидов, оставляя в качестве отходов только продукты деления, и через несколько сотен лет, отходы от ториевого реактора будут менее токсичными, чем урановая руда, которая используется в производстве низкообогащенного уранового топлива для легководного реактора такой же мощности. Другие исследования показывают, что загрязнения в виде актинидов могут доминировать в отходах ториевого цикла в некоторых будущих периодах.[16]
Отходы актинидов
В реакторе, когда нейтроны попадают в способные к расщеплению атомы (например, в некоторые изотопы урана), они либо разбивают ядро, либо поглощаются им, вызывая ядерные превращения (трансмутации) элементов. В случае U-233 трансмутация с большей вероятностью производит полезное ядерное топливо, чем трансурановые отходы. Когда U-233 поглощает нейтрон, он либо расщепляется, либо становится U-234. Вероятность деления при поглощении теплового нейтрона равна примерно 92 %, то есть соотношение вероятностей захвата и деления составляет около 1:12, что лучше, чем соответствующий показатель для U-235 (1:6), или для Pu-239 и Pu-241 (для обоих примерно 1:3).[17][18] В результате образуется меньше трансурановых отходов, чем в реакторе с использованием уран-плутониевого топливного цикла.
U-234, как и большинство нуклидов с четным числом нейтронов, не делится, но захватывает нейтрон и превращается в U-235. Если этот расщепляющийся изотоп не делится при захвате нейтрона, он превращается в U-236, Np-237, Pu-238 и в конце концов в расщепляющийся Pu-239 и более тяжелые изотопы плутония. Np-237 может быть извлечён из топлива и складирован в качестве отходов либо превращается в плутоний, который частично расщепляется, а частично превращается в Pu-242, а затем в америций и кюрий, которые, в свою очередь, могут быть удалены как отходы или возвращены в реактор для трансмутации и деления.
Однако, Pa-231 (с периодом полураспада 32 700 лет), который получается из Th-232 путём реакции (n,2n) (через изотоп Th-231, который превращается затем в Pa-231), является основным фактором долгосрочной радиотоксичности отработавшего ядерного топлива.
Загрязнение ураном-232
Уран-232 также образуется в этом процессе путём реакции (n,2n) при попадании быстрых нейтронов в U-233 по цепочке через Pa-233 и Th-232 :
Уран-232 имеет относительно короткий период полураспада (68,9 лет), и некоторые продукты его распада, такие как Rn-224, Bi-212 и особенно Tl-208, испускают гамма-излучение высокой энергии. Полная цепочка распада и периоды полураспада каждого изотопа показаны на следующем рисунке:
Топлива ториевого цикла испускают жесткое гамма-излучение, которое выводит из строя электронику, тем самым ограничивая их использование в качестве атомного оружия. U-232 невозможно химически отделить от U-233 в отработавшем ядерном топливе, однако химическое отделение тория от урана удаляет продукт распада Th-228 и предотвращает образование других изотопов ториевого цикла. Загрязнения можно избежать также с помощью жидкосолевого реактора-размножителя и отделения Pa-233, прежде чем он распадается в U-233. Жёсткое гамма-излучение создают радиационную опасность, которая требует при повторной обработке дистанционного манипулирования.
Ядерное топливо
В качестве ядерного топлива торий похож на U-238, который составляет большую часть природного и обедненного урана. Поперечное сечение (σa) поглощения тепловых нейтронов и резонансный интеграл (среднее сечение поглощения нейтронов для нейтронов средних энергий) для Th-232 примерно в 3,3 раза выше соответствующих значений для U-238.
Преимущества
По существующим оценкам запасы тория в земной коре примерно в три-четыре раза превышают запасы урана,[19] хотя нынешние сведения о запасах тория ограничены. В настоящее время торий получается как побочный продукт добычи редкоземельных элементов из монацитовых песков.
Хотя сечение деления тепловым нейтроном (σf) полученного изотопа U-233 сравнимо с аналогичным параметром для U-235 и Pu-239, он имеет гораздо более низкое сечение захвата (σγ), обеспечивая меньшее количество нейтронных поглощений, не сопровождаемых делением. Наконец, соотношение количества испущенных нейтронов на один поглощённый нейтрон (η) превышает 2 в широком диапазоне энергий, в том числе в тепловом спектре и, как следствие, ториевое топливо может стать основой для теплового реактора-бридера. Бридер уран-плутониевого цикла должен использовать нейтроны с большей энергией, поскольку для тепловых нейтронов коэффициент размножения менее 2.
Ториевое топливо также имеет благоприятные физические и химические свойства, которые улучшают функционирование реактора и хранилища отходов. По сравнению с преобладающим реакторным топливом, диоксидом урана (UO2), ториевый диоксид (ThO2) имеет более высокую температуру плавления, более высокую теплопроводность и низкий коэффициент теплового расширения. Двуокись тория также проявляет большую химическую стабильность и, в отличие от диоксида урана, дальше не окисляется.
Из-за того, что U-233, получаемый в ториевом цикле, значительно загрязнён изотопом U-232, отработанное ядерное топливо реакторов предлагаемой конструкции мало пригодно для получения оружейного урана, что способствует режиму нераспространения ядерного оружия. U-233 невозможно химически выделить из смеси с U-232. Кроме того, он имеет несколько продуктов распада, которые излучают высокоэнергетическое гамма-излучение. Эти высокоэнергетические фотоны представляют радиационную опасность, предполагающие дистанционную работу с выделенным ураном.
Долгосрочная (на время порядка 103-106 лет) радиационная опасность обычного отработанного уранового топлива вызывается в основном плутонием и младшими актинидами и во вторую очередь долгоживущими продуктами распада. Одного захвата нейтрона изотопом U-238 достаточно для получения трансурановых элементов, в то время как для Th-232 для этого необходим захват пяти нейтронов. 98-99 % ядер ториевого топливного цикла превращается в U-233 или U-235, остальные долгоживущие трансураны производятся в незначительных количествах. Поэтому торий является потенциально привлекательной альтернативой урана в MOX-топливе для сведения к минимуму образования трансурановых элементов и максимального уничтожения плутония.[20]
Недостатки
Есть несколько трудностей при применении тория в качестве ядерного топлива, в частности для твердотопливных реакторов:
В отличие от урана, природный торий содержит только один изотоп и не имеет расщепляющихся изотопов, поэтому для цепной реакции к нему необходимо добавлять расщепляющиеся материалы, например, U-233 или U-235. Это, наряду с высокой температурой спекания оксида тория, усложняет изготовление топлива. В Оукриджской Национальной лаборатории в 1964—1969 проводились эксперименты с тетрафторидом тория в качестве топлива жидкосолевого реактора, в котором, как ожидалось, будет легче отделить примеси, замедляющие или останавливающие цепную реакцию.
В открытом топливном цикле (то есть с использованием U-233 на месте), необходима большая степень выгорания для достижения благоприятного баланса нейтронов. Хотя диоксид тория показывает степень выгорания 170 000 МВт-сутки/т и 150 000 МВт-сутки/т на электростанциях Форт-Сент-Враин и АВР соответственно, затруднительно догнать по этому параметру легководные реакторы (ЛВР), которые составляют подавляющее большинство существующих реакторов.
В открытом ториевом топливном цикле в отходы уходит остаточный долгоживущий изотоп U-233.
Другая проблема, связанная с ториевым топливным циклом — это сравнительно длительный интервал, в течение которого Th-232 превращается в U-233. Период полураспада Pa-233 — около 27 дней, что на порядок больше, чем у Np-239. Как следствие, существующий Pa-233 превращается в ториевое топливо. Pa-233 хороший поглотитель нейтронов и хотя он в конечном итоге порождает расщепляющийся изотоп U-235, это требует поглощения двух нейтронов, что ухудшает баланс нейтронов и повышает вероятность появления трансуранов.
Кроме того, если твердый торий используется в замкнутом топливном цикле, в котором возвращается в цикл U-233, при изготовлении топлива требуется дистанционное управление из-за высокого уровня радиации продуктов распада U-233. Это также верно и для вторичного тория из-за наличия Th-228, который является частью цепочки распада U-232. Далее, в отличие от проверенных технологий утилизации отходов уранового топлива (например, ПУРЕКС), технологии переработки тория (например, THOREX) находятся только в стадии разработки.
Хотя присутствие U-232 усложняет дело, есть опубликованные документы, свидетельствующие о том, что U-233 использовался один раз при испытании ядерного оружия. Соединенные Штаты провели испытания композитной U-233-плутониевой бомбы во время операции «Teapot» в 1955 году, хотя с гораздо более низким эффектом, чем ожидалось.[21]
Хотя ториевое топливо производит гораздо меньше долгоживущих трансурановых элементов, чем урановое, некоторые долгоживущие актиноиды осуществляют долгосрочное радиологическое воздействие, особенно Pa-231.
Защитники жидкоядерных и жидкосолевых реакторов, таких как LFTR, утверждают, что эти технологии нивелируют недостатки тория, присутствующие в твердотопливных реакторах. Поскольку было построено только два реактора на жидком фториде (ORNL ARE и MSRE) и ни в одном из них не использовался торий, трудно судить о реальных преимуществах этих реакторов.
Реакторы
Ториевое топливо использовали несколько различных типов реакторов, включая легководные реакторы, тяжеловодные реакторы, высокотемпературные газовые реакторы, быстрые реакторы с натриевым теплоносителем и жидкосолевые реакторы.[22]
Список ториевых реакторов
Источник информации: IAEA TECDOC-1450 «Thorium Fuel Cycle — Potential Benefits and Challenges», Table 1: Thorium utilization in different experimental and power reactors.[17] В таблице не показан реактор Дрезден 1 (США), где использовались «уголковые стержни из оксида тория».[23]
Название | Страна | Тип реактора | Мощность | Топливо | Годы работы |
---|---|---|---|---|---|
AVR | ФРГ |
HTGR, experimental (pebble bed reactor) | 15 МВт (э) | Th+U-235 Driver fuel, coated fuel particles, oxide & dicarbides | 1967-1988 |
THTR-300 | ФРГ | HTGR, power (pebble type) | 300 МВт (э) | Th+U-235, Driver fuel, coated fuel particles, oxide & dicarbides | 1985-1989 |
Lingen | ФРГ | BWR irradiation-testing | Test fuel (Th,Pu)O2 pellets | 1968-1973 | |
Dragon (OECD-Euratom) | Великобритания, Швеция, Норвегия, Швейцария |
HTGR, Experimental (pin-in-block design) | 20 МВт | Th+U-235 Driver fuel, coated fuel particles, oxide & dicarbides | 1966-1973 |
Peach Bottom | США | HTGR, Experimental (prismatic block) | 40 МВт (э) | Th+U-235 Driver fuel, coated fuel particles, oxide & dicarbides | 1966-1972 |
Fort St Vrain | США | HTGR, Power (prismatic block) | 330 МВт (э) | Th+U-235 Driver fuel, coated fuel particles, Dicarbide | 1976-1989 |
MSRE ORNL | США | MSR | 7,5 МВт | U-233 molten fluorides | 1964-1969 |
BORAX-IV & Elk River Station | США | BWR (pin assemblies) | 24 МВт (э) |
2,4 МВт (э)Th+U-235 Driver fuel oxide pellets | 1963-1968 |
Shippingport | США | LWBR, PWR, (pin assemblies) | 100 МВт (э) | Th+U-233 Driver fuel, oxide pellets | 1977-1982 |
Indian Point 1 | США | LWBR, PWR, (pin assemblies) | 285 МВт (э) | Th+U-233 Driver fuel, oxide pellets | 1962-1980 |
SUSPOP/KSTR KEMA | Нидерланды | Aqueous homogenous suspension (pin assemblies) | 1 МВт | Th+HEU, oxide pellets | 1974-1977 |
NRX & NRU | Канада | MTR (pin assemblies) | 20 МВт; 200 МВт | Th+U-235, Test Fuel | 1947 (NRX) + 1957 (NRU); Irradiation-testing of few fuel elements |
CIRUS; DHRUVA; & KAMINI | Индия | MTR thermal | 40 МВт; 100 МВт; 30 кВт (low power, research) | Al+U-233 Driver fuel, ‘J’ rod of Th & ThO2, ‘J’ rod of ThO2 | 1960-2010 (CIRUS); others in operation |
KAPS 1 &2; KGS 1 & 2; RAPS 2, 3 & 4 | Индия | PHWR, (pin assemblies) | 220 МВт (э) | ThO2 pellets (for neutron flux flattening of initial core after start-up) | 1980 (RAPS 2) +; continuing in all new PHWRs |
FBTR | Индия | LMFBR, (pin assemblies) | 40 МВт (т) | ThO2 blanket | 1985; в строю |
Примечания
- Ralph Moir. Liquid Fuel Nuclear Reactors . American Physical Society Forum on Physics & Society (январь 2011). Дата обращения: 31 мая 2012.
- Nuclear Materials FAQ
- Kang, J.; Von Hippel, F. N. U‐232 and the proliferation‐resistance of U‐233 in spent fuel (англ.) // Science & Global Security : journal. — 2001. — Vol. 9. — P. 1. — doi:10.1080/08929880108426485. Архивированная копия (недоступная ссылка). Дата обращения: 2 марта 2015. Архивировано 3 декабря 2014 года.
- "Superfuel" Thorium a Proliferation Risk? (5 декабря 2012).
- Ganesan Venkataraman. Bhabha and his magnificent obsessions, page 157 (англ.). — Universities Press, 1994.
- IAEA-TECDOC-1349 Potential of thorium-based fuel cycles to constrain plutonium and to reduce the long-lived waste toxicity . International Atomic Energy Agency (2002). Дата обращения: 24 марта 2009.
- Evans, Brett. Scientist urges switch to thorium, ABC News (14 апреля 2006). Архивировано 28 марта 2010 года. Дата обращения 17 сентября 2011.
- Martin, Richard. Uranium Is So Last Century — Enter Thorium, the New Green Nuke, Wired (21 декабря 2009). Дата обращения 19 июня 2010.
- Miller, Daniel Nuclear community snubbed reactor safety message: expert . ABC News (март 2011). Дата обращения: 25 марта 2012.
- Dean, Tim New age nuclear (недоступная ссылка). Cosmos (апрель 2006). Дата обращения: 19 июня 2010. Архивировано 5 января 2010 года.
- MacKay, David J. C. Sustainable Energy - without the hot air (неопр.). — UIT Cambridge Ltd., 2009. — С. 166.
- Flibe Energy . Flibe Energy. Дата обращения: 12 июня 2012.
- The Future of the Nuclear Fuel Cycle, MIT, 2011, p. 181, <https://energy.mit.edu/wp-content/uploads/2011/04/MITEI-The-Future-of-the-Nuclear-Fuel-Cycle.pdf>
- Date set for fuel reactor (2 сентября 2013). Дата обращения 4 сентября 2013.
- Le Brun, C. Impact of the MSBR concept technology on long-lived radio-toxicity and proliferation resistance (PDF). Technical Meeting on Fissile Material Management Strategies for Sustainable Nuclear Energy, Vienna 2005. Дата обращения: 20 июня 2010.
- Brissot R., Heuer D., Huffer E., Le Brun, C., Loiseaux, J-M, Nifenecker H., Nuttin A. Nuclear Energy With (Almost) No Radioactive Waste? (недоступная ссылка). Laboratoire de Physique Subatomique et de Cosmologie (LPSC) (июль 2001). — «according to computer simulations done at ISN, this Protactinium dominates the residual toxicity of losses at 10 000 years». Архивировано 25 мая 2011 года.
- IAEA-TECDOC-1450 Thorium Fuel Cycle-Potential Benefits and Challenges (PDF). International Atomic Energy Agency (май 2005). Дата обращения: 23 марта 2009.
- Interactive Chart of Nuclides . Brookhaven National Laboratory. Дата обращения: 2 марта 2015. Thermal neutron cross sections in barns (isotope, capture: fission, f/f+c, f/c) 233U 45.26:531.3 92,15 % 11.74; 235U 98.69:585.0 85,57 % 5.928; 239Pu 270.7:747.9 73,42 % 2.763; 241Pu 363.0:1012 73,60 % 2.788.
- The Use of Thorium as Nuclear Fuel (PDF). American Nuclear Society (ноябрь 2006). Дата обращения: 24 марта 2009.
- Thorium test begins, World Nuclear News (21 июня 2013). Дата обращения 21 июля 2013.
- Operation Teapot . Nuclear Weapon Archive (15 октября 1997). Дата обращения: 9 декабря 2008.
- IAEA-TECDOC-1319 Thorium Fuel Utilization: Options and trends . International Atomic Energy Agency (ноябрь 2002). Дата обращения: 24 марта 2009.
- Spent Nuclear Fuel Discharges from U. S. Reactors (1993) (англ.). — Energy Information Administration, 1995. — P. 111. — ISBN 978-0-7881-2070-1. They were manufactured by General Electric (assembly code XDR07G) and later sent to the Savannah River Site for reprocessing.
Литература
- Семченков Ю, Сидоренко В., Субботин С., Алексеев П. Ториевый ренессанс в ЯЭ?. — РЭА, 2014, № 11, с. 14—17.
- Касьян А. И., Хамидуллин Р. Я. Перспективы ториевого цикла. Часть 1. — Двигатель, 2012, № 1, с. 48—51.
- Касьян А. И., Хамидуллин Р. Я. Перспективы ториевого цикла. Часть 2. — Двигатель, 2012, № 2, с. 42—45.
- Kasten, P. R. (1998). «Review of the Radkowsky Thorium reactor concept (недоступная ссылка)» Science & Global Security, 7(3), 237—269.
- Duncan Clark (9 September 2011), «Thorium advocates launch pressure group. Huge optimism for thorium nuclear energy at the launch of the Weinberg Foundation», The Guardian
- Nelson, A. T. Thorium: Not a near-term commercial nuclear fuel (англ.) // Bulletin of the Atomic Scientists : journal. — 2012. — Vol. 68, no. 5. — P. 33. — doi:10.1177/0096340212459125.
- B.D. Kuz’minov, V.N. Manokhin, (1998) «Status of nuclear data for the thorium fuel cycle», IAEA translation from the Russian journal Yadernye Konstanty (Nuclear Constants) Issue No. 3-4, 1997
- Thorium and uranium fuel cycles comparison by the UK National Nuclear Laboratory
- Fact sheet on thorium at the World Nuclear Association.
- Annotated bibliography for the thorium fuel cycle from the Alsos Digital Library for Nuclear Issues