Старт-кодон
Старт-кодон или инициаторный кодон — первый кодон матричной РНК, c которого начинается трансляция белка в рибосоме. У эукариот и архей старт-кодон всегда кодирует метионин, а у бактерий и прокариот— модифицированный метионин (N-формилметионин). Наиболее распространенным стартовым кодоном является AUG (т.е. ATG в соответствующей последовательности ДНК). В большинстве случаев роль инициаторного кодона играет триплет AUG [1]. Старт-кодону предшествует 5′-нетранслируемая область (5'-UTR). В 5'-UTR бактерий локализована последовательность Шайна — Дальгарно (AGGAGG), которая служит для связывания рибосомы и отделена спейсером от старт-кодона.
Альтернативные старт-кодоны
Альтернативные старт-кодоны отличаются от стандартного кодона AUG. Такие кодоны встречаются как у прокариот, так и у эукариот. Альтернативные старт-кодоны обычно кодируют метионин, когда они находятся в начале белка (даже если кодон кодирует другую аминокислоту). Так например, кодон GUG кодирует валин в случае, если он находится внутри кодирующей последовательности, и стартовый метионин, если расположен в начале последовательности. Это происходит потому, что для инициации трансляции используется специальная транспортная РНК. Антикодоном инициирующей аминоацил-тРНК всегда является CAU; он полностью комплементарен основному старт-кодону AUG и частично комплементарен более редким кодонам. Кроме частично комплементарных GUG и UUG в исключительных случаях, особенно в клетках бактерий, инициация может начинаться с триплетов AUU, AUA, ACG и CUG. Эти так называемые «слабые» кодоны могут выполнять свою функцию в комбинации с сильными последовательностями Шайна-Дальгарно или другими структурными элементами, способствующими инициации[2].
Эукариоты
Альтернативные старт-кодоны, отличные от AUG, крайне редки в эукариотических геномах. И всё же, в некоторых мРНК клетки встречаются альтернативные старт-кодоны[3]. В случае семи из девяти возможных однонуклеотидных замен в старт-кодоне AUG мРНК дигидрофолатредуктазы, полученные РНК оставались функциональными и обеспечивали трансляцию этого фермента в клетках млекопитающих[1]. В дополнение к каноническому пути через метионил-тРНК и кодон AUG, в клетках млекопитающих трансляция может начинаться с лейцина с использованием лейцил-тРНК, которая комплементарна кодону CUG[4][5].
Митохондрии (и прокариоты) значительно чаще, чем эукариоты, используют альтернативные старт-кодоны (AUA и AUU у человека и преимущественно GUG и UUG у прокариот).
Прокариоты
У E. coli в 83 % случаев трансляция начинается с AUG (3542/4284), в 14 % (612) с GUG, в 3 % (103) с UUG[6] и в одном-двух случаях с других кодонов (например, AUU и возможно CUG)[7][8].
К широко известным генам, в которых нет старт-кодона AUG, относятся lacI (GUG)[9][10] и lacA (UUG)[11] из lac-оперона E. coli.
Стандартный генетический код
неполярный | полярный | основный | кислотный | (стоп-кодон) |
1-е основание |
2-е основание | 3-е основание | |||||||
---|---|---|---|---|---|---|---|---|---|
U | C | A | G | ||||||
U | UUU | (Phe/F) Фенилаланин | UCU | (Ser/S) Серин | UAU | (Tyr/Y) Тирозин | UGU | (Cys/C) Цистеин | U |
UUC | UCC | UAC | UGC | C | |||||
UUA | (Leu/L) Лейцин | UCA | UAA | Стоп (Охра) | UGA | Стоп (Опал) | A | ||
UUG | UCG | UAG | Стоп (Янтарь) | UGG | (Trp/W) Триптофан | G | |||
C | CUU | CCU | (Pro/P) Пролин | CAU | (His/H) Гистидин | CGU | (Arg/R) Аргинин | U | |
CUC | CCC | CAC | CGC | C | |||||
CUA | CCA | CAA | (Gln/Q) Глутамин | CGA | A | ||||
CUG | CCG | CAG | CGG | G | |||||
A | AUU | (Ile/I) Изолейцин | ACU | (Thr/T) Треонин | AAU | (Asn/N) Аспарагин | AGU | (Ser/S) Серин | U |
AUC | ACC | AAC | AGC | C | |||||
AUA | ACA | AAA | (Lys/K) Лизин | AGA | (Arg/R) Аргинин | A | |||
AUG[A] | (Met/M) Метионин | ACG | AAG | AGG | G | ||||
G | GUU | (Val/V) Валин | GCU | (Ala/A) Аланин | GAU | (Asp/D) Аспарагиновая кислота | GGU | (Gly/G) Глицин | U |
GUC | GCC | GAC | GGC | C | |||||
GUA | GCA | GAA | (Glu/E) Глутаминовая кислота | GGA | A | ||||
GUG | GCG | GAG | GGG | G |
- A Кодон AUG кодирует метионин и одновременно является сайтом инициации трансляции: первый кодон AUG в кодирующей области мРНК служит началом синтеза белка[12].
См. также
Примечания
- Peabody D. S. Translation initiation at non-AUG triplets in mammalian cells (англ.) // The Journal of Biological Chemistry : journal. — 1989. — Vol. 264, no. 9. — P. 5031—5035. — PMID 2538469.
- Lobanov, A. V.; Turanov, A. A.; Hatfield, D. L.; Gladyshev, V. N. Dual functions of codons in the genetic code (англ.) // Critical Reviews in Biochemistry and Molecular Biology : journal. — 2010. — Vol. 45, no. 4. — P. 257—265. — doi:10.3109/10409231003786094. — PMID 20446809.
- Ivanov I.P., Firth A.E., Michel A.M., Atkins J.F., Baranov P.V. Identification of evolutionarily conserved non-AUG-initiated N-terminal extensions in human coding sequences (англ.) // Nucleic Acids Research : journal. — 2011. — Vol. 39, no. 10. — P. 4220—4234. — doi:10.1093/nar/gkr007. — PMID 21266472.
- Starck, S. R.; Jiang, V; Pavon-Eternod, M; Prasad, S; McCarthy, B; Pan, T; Shastri, N. Leucine-tRNA initiates at CUG start codons for protein synthesis and presentation by MHC class I (англ.) // Science : journal. — 2012. — Vol. 336, no. 6089. — P. 1719—1723. — doi:10.1126/science.1220270. — PMID 22745432.
- Dever, T. E. Molecular biology. A new start for protein synthesis (англ.) // Science : journal. — 2012. — Vol. 336, no. 6089. — P. 1645—1646. — doi:10.1126/science.1224439. — PMID 22745408.
- Blattner, F. R.; Plunkett g, G.; Bloch, C. A.; Perna, N. T.; Burland, V.; Riley, M.; Collado-Vides, J.; Glasner, J. D.; Rode, C. K.; Mayhew, G. F.; Gregor, J.; Davis, N. W.; Kirkpatrick, H. A.; Goeden, M. A.; Rose, D. J.; Mau, B.; Shao, Y. The Complete Genome Sequence of Escherichia coli K-12 (англ.) // Science : journal. — 1997. — Vol. 277, no. 5331. — P. 1453—1462. — doi:10.1126/science.277.5331.1453. — PMID 9278503.
- Farabaugh, P. J. Sequence of a 1.26-kb DNA fragment containing the structural gene for E.coli initiation factor IF3: Presence of an AUU initiator codon (англ.) // The EMBO journal : journal. — 1982. — Vol. 1, no. 3. — P. 311—315. — PMID 6325158.
- Missiakas, D.; Georgopoulos, C.; Raina, S. The Escherichia coli heat shock gene htpY: Mutational analysis, cloning, sequencing, and transcriptional regulation (англ.) // Journal of Bacteriology : journal. — 1993. — Vol. 175, no. 9. — P. 2613—2624. — PMID 8478327.
- E.coli lactose operon with lacI, lacZ, lacY and lacA genes GenBank: J01636.1
- Farabaugh P. J. Sequence of the lacI gene (англ.) // Nature. — 1978. — Vol. 274, no. 5673. — P. 765—769. — doi:10.1038/274765a0. — PMID 355891.
- NCBI Sequence Viewer v2.0
- Nakamoto T. Evolution and the universality of the mechanism of initiation of protein synthesis. (англ.) // Gene. — 2009. — 1 March (vol. 432, no. 1-2). — P. 1—6. — doi:10.1016/j.gene.2008.11.001. — PMID 19056476.
Литература
- Спирин А. С. Молекулярная биология. Рибосомы и биосинтез белка. — Москва: Академия, 2011. — 512 с. — 1000 экз. — ISBN 978-5-7695-6668-4.