Полярон
Поляро́н — квазичастица в кристалле, состоящая из электрона и сопровождающего его поля упругой деформации (поляризации) решётки. Медленно движущийся электрон в диэлектрическом кристалле, взаимодействующий с ионами решётки через дальнодействующие силы, будет постоянно окружён областью решёточной поляризации и деформации, вызванной движением электрона. Двигаясь через кристалл, электрон проводит решёточную деформацию, потому можно говорить о наличии облака фононов, сопровождающего электрон. Характер поляризации и энергия связи электрона с решёткой отличаются в металлах, полупроводниках и ионных кристаллах. Это связано с типом связи и скоростью движения электронов в решётке.
Полярон | |
Состав: | Квазичастица: состоит из электрона и сопровождающего его поля поляризации |
---|---|
Классификация: | Различают поляроны малого радиуса (при )[1], промежуточного радиуса (), большого радиуса ().[2], ТИ-поляроны |
Теоретически обоснована: | С. И. Пекар в 1946 году |
В честь кого и/или чего названа: | Поляризация |
Кол-во типов: | 4 |
Спин: | ħ |
Понятие о поляроне введено советским физиком С. И. Пекаром в 1946 году, им же впоследствии была развита их теория[3][4] . Эта теория основывается на электростатическом взаимодействии электрона проводимости на длинноволновые оптические фононы.
Поляроны в металлах
Поляризация решётки осуществляется не всеми электронами, а только фермиевскими электронами. В простейшем случае, для квадратичной дисперсии и сферической поверхности Ферми, эффективная масса фермиевских электронов ( — масса свободного электрона), а их скорость близка к скорости Ферми м/с. Принято говорить, что электрон в кристаллической решётке окружён «облаком» виртуальных фононов с дебаевской частотой. Чем больше поляризация, тем больше рождается виртуальных фононов. и тем сильнее связь электрона с решёткой. Энергия связи электрона с решёткой определяется константой электрон-фононного взаимодействия :
Коэффициент учитывает существование трёх ветвей спектра фононов, а — дебаевская частота.
Электрон-фононное взаимодействие приводит к тому, что масса полярона становится больше массы «голого» электрона
Таким образом, поляроны в металлах являются отрицательно заряженными с зарядом и эффективной массой [5].
Поляроны в полупроводниках
В полупроводниках с ковалентной связью продольные оптические колебания слабо влияют на электроны и дырки, так как кристаллическая решётка состоит из нейтральных атомов, и продольные колебания не поляризуют решётку. Константа электрон-фононного взаимодействия в таких веществах слишком мала () для образования поляронов, и параметры зонного спектра и носителей заряда в полупроводниках не перенормируются в результате поляронного взаимодействия[6].
Поляроны в ионных кристаллах
Решётка ионных кристаллов образована положительно и отрицательно заряженными ионами, удерживаемыми вместе за счёт сил электростатического взаимодействия. Концентрация свободных электронов настолько мала, что электронный газ всегда невырожден, поэтому электроны и фононы находятся в тепловом равновесии. Поэтому при понижении температуры в ионных кристаллах может возникнуть автолокализация электронов в собственных потенциальных ямах за счёт притяжения к положительным ионам и отталкивания от отрицательных. При этом отрицательные и положительные ионы смещаются в противоположных направлениях, что эквивалентно возбуждению продольных оптических фононов, длина волны которых может варьироваться в широких пределах. Электроны эффективно взаимодействуют только с продольными оптическими колебаниями, длина волны которых больше расстояния, которое проходит электрон за период колебаний решётки, так как только в этом случае происходит изменение плотности кристалла, образование связанных электрических зарядов и поляризационного поля[7].
Различают поляроны большого и малого радиуса. Чем сильнее электрон поляризует решётку, тем больше эффективная зона поляризации и больше эффективная масса полярона. Размер полярона определяется соотношением между размером возмущенной области кристалла (радиусом полярона ) и постоянной решетки . Различают поляроны малого радиуса (при )[1], промежуточного радиуса (), большого радиуса ().[2] Спин полярона не зависит от радиуса и равен 1/2.
Поляроны малого радиуса
Неподвижный электрон, помещённый в кристалл, поляризует кристаллическую решётку. Энергия поляризации равна
где , а и — статическая и высокочастотная диэлектрические проницаемости соответственно. При характерных значениях , , нм энергия поляризации равна эВ.
Суммарная энергия полярона малого радиуса равна
где — потенциальная энергия локализованного электрона, а — характерный радиус полярона.
За счёт поляризации ионов решётки возбуждаются оптические фононы, поэтому эффективность поляризации можно характеризовать константой электрон-фононной связи , характеризующая число оптических фононов, возбуждённых в решётке. Если — ширина электронной зоны, характеризующая кинетическую энергию электронов, то полярон может образоваться лишь при условии , и температура, ниже которой образуется полярон, задаётся соотношением
Поэтому образование поляронов возможно только в достаточно узкозонных кристаллах с характерным значением эВ. При образовании поляронов электронная зона сильно сужается и образуется поляронная зона шириной , которую можно оценить по формуле
При типичных энергиях полярона эВ и оптического фонона эВ величина и ширина поляронной зоны эВ, что на четыре порядка меньше исходной электронной зоны. Поэтому такая узкая зона реализуется только в идеальных совершенных кристаллах, любые нарушения кристалличности приводят к локализации таких поляронов.
При полярон малого радиуса перемещается термически активированными скачками с энергией активации порядка энергии полярона. Подвижность поляронов растёт приблизительно экспоненциально с ростом температуры[8].
Поляроны большого радиуса
В отличие от поляронов малого радиуса, поляроны большого радиуса образуются в ионных кристаллах с широкой зоной проводимости , и константа электрон-фононной связи определяется выражением
При образуется полярон большого радиуса, а при слабой электрон-фононной связи () электрон поляризует решётку, но не локализуется в созданной им поляризационной яме. Расчёты дают выражения для массы и энергии полярона большого радиуса:
Для реальных кристаллов наиболее интересна область промежуточных значений . При этих значениях нельзя получить аналитических выражений, но численные расчёты показывают, что предыдущие две формулы справедливы до . Полная энергия полярона большого радиуса равна
что в два раза меньше, чем аналогичная энергия для полярона малого радиуса[9].
Подвижность поляронов
Поляроны большого радиуса не меняют качественно зонный спектр кристалла, их подвижность уменьшается обратно пропорционально увеличению их эффективной массы, перенормируются также их плотность состояний и скорость.
У поляронов малого радиуса подвижность сильно зависит от температуры. Если при низких температурах волновые функции поляронов перекрываются, то это приводит к образованию поляронной зоны с обычным зонным механизмом проводимости. При повышении температуры образуется система локализованных поляронов, и зонный механизм сменяется прыжковым. Прыжковую проводимость можно рассматривать как диффузную проводимость
- ,
где [10].
Структура поляронов
В реальности поляроны имеют внутреннюю структуру, так как поляронные потенциальные ямы при сильном электрон-фононном взаимодействии образуются из набора оптических фононов с разными длинами волн. Поляронные ямы могут иметь несколько уровней энергии, соответствующих разным распределениям заряда и различным радиусам. Эти уровни могут размываться в зоны вследствие конечности времени существования полярона или в результате того, что параметры поляронных ям варьируются из-за неоднородности вещества. Также поляроны исчезают в сильных электрических полях, так как скорость полярона не может быть больше групповой скорости продольных оптических фононов. При увеличении дрейфовой скорости электрон отрывается от потенциальной ямы, и она исчезает[11].
Биполяроны
В некоторых веществах два полярона с одинаковыми зарядами могут взаимно связываться, образуя биполярон. Биполярон представляет собой квазичастицу, состоящую из двух электронов, лежащих в общей потенциальной яме. Заряд биполярона равен либо соответственно заряду объединившихся поляронов, а спин в основном -состоянии равен нулю. То есть биполяроны могут образовывать бозе-конденсат, так как подчиняются статистике Бозе-Эйнштейна[12].
Примечания
- R.P. Feynman, R.W. Hellwarth, C.K. Iddings, P.M. Platzman, Phys. Rev. 127, 1004 (1962)
- Л. Д. Ландау Собрание трудов, т 1, М., Наука, 1969, стр. 90
- Пекар, Соломон Исаакович // Большая русская биографическая энциклопедия (электронное издание). — Версия 3.0. — М.: Бизнессофт, ИДДК, 2007.// Статья в большой биографической энциклопедии
- Пекар, 1951.
- Кульбачинский, 2005, с. 396-398.
- Кульбачинский, 2005, с. 398.
- Кульбачинский, 2005, с. 398-400.
- Кульбачинский, 2005, с. 400-401.
- Кульбачинский, 2005, с. 402.
- Кульбачинский, 2005, с. 405-406.
- Кульбачинский, 2005, с. 406-407.
- Кульбачинский, 2005, с. 407.
Литература
- Брандт Н. Б., Кульбачинский В. А. Квазичастицы в физике конденсированного состояния. — М.: ФИЗМАТЛИТ, 2005. — 632 с. — ISBN 5-9221-0564-7.
- Пекар С. И. Исследования по электронной теории кристаллов. — М.—Л.: Гос. изд. технико-теоретической литературы, 1951. — 256 с.
- Фейнман Р. Статистическая механика. — М.: Мир, 1975.
- Поляроны : сборник / под ред. Ю. А. Фирсова. — М.: Наука, 1975.
- Каширина Н. И., Лахно В. Д. Математическое моделирование автолокализированных состояний в конденсированных средах. - М., Физматлит, 2014. - 292 с. - ISBN 978-5-9221-1530-8