Метод Феррари
Метод Феррари — аналитический метод решения алгебраического уравнения четвёртой степени, предложенный итальянским математиком Лодовико Феррари.
Описание метода
Пусть уравнение -й степени имеет вид
. | (1) |
Если — произвольный корень кубического уравнения
(2) |
(резольвенты основного уравнения), то четыре корня исходного уравнения находятся как корни двух квадратных уравнений
где подкоренное выражение в правой части является полным квадратом. Отметим, что дискриминанты исходного уравнения (1) четвёртой степени и уравнения (2) совпадают.
Представим уравнение четвёртой степени в виде:
Его решение может быть найдено из следующих выражений:
-
- если , тогда, решив и, сделав подстановку , найдём корни:
- .
- если , тогда, решив и, сделав подстановку , найдём корни:
- , (любой знак квадратного корня подойдёт)
- , (три комплексных корня, один из которых подойдёт)
- Здесь и — два независимых параметра, каждый из которых равен либо , либо . Количество возможных пар их значений равно четырём, и каждая пара производит один из четырёх корней изначального уравнения четвёртой степени. В случае, если какой-то из корней является кратным, количество дающих его пар значений и равно степени его кратности. В зависимости от выбора (при взятии кубического корня возникает неоднозначность) корни будут соответствовать парам в разном порядке.
Вывод
Пусть имеется уравнение канонического вида:
Обозначим корни уравнения как . Для корней уравнения в канонической форме будет выполняться соотношение
Это уравнение будет иметь по меньшей мере два недействительных корня, которые будут сопряженными друг другу. Будем считать, что это
Причём , — действительные числа. Тогда два других корня можно записать как
Здесь может быть либо действительным, либо чисто мнимым числом. Выразим a через корни уравнения
Выразим К через остальные коэффициенты:
или
Итого
Или
Отсюда
Заменяя , получаем резольвенту, решив которую, находим W
История
С 15 лет Луиджи Феррари был учеником у миланского математика Джероламо Кардано, который быстро обнаружил его выдающиеся способности. К этому времени Кардано уже был известен алгоритм решения кубических уравнений; Феррари сумел найти аналогичный способ для решения уравнений четвёртой степени. Оба алгоритма Кардано опубликовал в своей книге «Высокое искусство».