Метод Феррари

Метод Феррари — аналитический метод решения алгебраического уравнения четвёртой степени, предложенный итальянским математиком Лодовико Феррари.

Описание метода

Пусть уравнение -й степени имеет вид

. (1)

Если  — произвольный корень кубического уравнения

(2)

(резольвенты основного уравнения), то четыре корня исходного уравнения находятся как корни двух квадратных уравнений

где подкоренное выражение в правой части является полным квадратом. Отметим, что дискриминанты исходного уравнения (1) четвёртой степени и уравнения (2) совпадают.

Представим уравнение четвёртой степени в виде:

Его решение может быть найдено из следующих выражений:

если , тогда, решив и, сделав подстановку , найдём корни:
.
, (любой знак квадратного корня подойдёт)
, (три комплексных корня, один из которых подойдёт)


Здесь и — два независимых параметра, каждый из которых равен либо , либо . Количество возможных пар их значений равно четырём, и каждая пара производит один из четырёх корней изначального уравнения четвёртой степени. В случае, если какой-то из корней является кратным, количество дающих его пар значений и равно степени его кратности. В зависимости от выбора (при взятии кубического корня возникает неоднозначность) корни будут соответствовать парам в разном порядке.

Вывод

Пусть имеется уравнение канонического вида:

Обозначим корни уравнения как . Для корней уравнения в канонической форме будет выполняться соотношение

Это уравнение будет иметь по меньшей мере два недействительных корня, которые будут сопряженными друг другу. Будем считать, что это

Причём ,  — действительные числа. Тогда два других корня можно записать как

Здесь может быть либо действительным, либо чисто мнимым числом. Выразим a через корни уравнения

Выразим К через остальные коэффициенты:

или

Итого

Или

Отсюда

Заменяя , получаем резольвенту, решив которую, находим W

История

С 15 лет Луиджи Феррари был учеником у миланского математика Джероламо Кардано, который быстро обнаружил его выдающиеся способности. К этому времени Кардано уже был известен алгоритм решения кубических уравнений; Феррари сумел найти аналогичный способ для решения уравнений четвёртой степени. Оба алгоритма Кардано опубликовал в своей книге «Высокое искусство».

См. также

Ссылки

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.