Кори, Герти Тереза

Ге́рти Тере́за Ко́ри, урождённая Ра́дниц (англ. Gerty Theresa Cori, Ге́рти Тере́за Ра́дниц-Ко́ри, 15 августа 1896, Прага, Австро-Венгрия (ныне Чехия) — 26 октября 1957) — американский биохимик. Член Национальной академии наук США (1948)[4].

Герти Тереза Кори
англ. Gerty Theresa Cori
Имя при рождении чеш. Gerty Theresa Radnitz[1]
Дата рождения 15 августа 1896(1896-08-15)
Место рождения Прага (Австро-Венгрия)
Дата смерти 26 октября 1957(1957-10-26) (61 год)
Место смерти Глендейл (штат Миссури, США)
Страна Австро-Венгрия, Чехословакия, США
Научная сфера биохимия
Место работы Университет Вашингтона в Сент-Луисе
Альма-матер
Известна как биохимик, открывшая роль гормонов передней доли гипофиза в метаболизме глюкозы
Награды и премии Нобелевская премия по физиологии и медицине (1947)
 Медиафайлы на Викискладе

Наиболее значительным вкладом Герти и Карла Кори было создание цикла углеводов известного как цикл Кори, выделение глюкозо-1-фосфата и открытие фосфорилазы и фосфоглюкомутазы. Эти открытия установили ферментативный путь гликогенолиза и гликолиза. Совместно с мужем Карлом Кори стала лауреатом Нобелевской премии по физиологии и медицине 1947 года «за открытие каталитического превращения гликогена».

В метаболизме гликогена, Герти Кори была первопроходцем в открытии деветвящего фермента амило-1,6-глюкоксидазы и его применении для установления структуры гликогена путём последовательного ферментативного расщепления. Эта новаторская работа привела к разъяснению ферментативных дефектов в болезнях связанных с запасанием гликогена. Её исследования, таким образом, расширяли фундаментальные научные открытия в клинической арене, в частности в сфере педиатрии, её оригинальной области клинических интересов и специализации.

Молодые годы

Герти Тереза Радниц родилась 8 августа 1896 года в Праге, в то время часть Австро-Венгерской империи, в еврейской семье[5]. Отто Радниц, её отец, был генеральным директором сахарного завода в Богемии. Брат её мамы был профессором педиатрии в университете Праги. Герти обучалась дома до достижения десяти лет, когда она пошла в подготовительную школу для девочек, которую окончила в 1912 году. В 1914 после сдачи её последнего экзамена в гимназии (Tetschen Real Gymnasium), она поступила в качестве студента-медика в университет Карла Фердинанда (Carl Ferdinand University), немецкий университет в Праге. Там она встретила Карла Кори; они получили степени доктора по медицине вместе в 1920 году и сыграли свадьбу в Вене в августе того же года[6].

Карл описывает её следующим образом: «Она была такой же студенткой, молодой женщиной, которая обладала шармом, жизненной силой, интеллектом, чувство юмора и любовью к открытиям, качества, которые сразу же привлекли меня». Их исследования начались как студенческие и привели к первой совместной публикации в 1920 году[7].

Времена были сложные. Первая мировая война только что закончилась, и Австрийская империя начала распадаться. Прага стала столицей новой страны Чехословакии. Голод и недоедание были широко распространены и у Кори Герти проявились симптомы ксерофталмии — которые, к счастью, прошли при улучшении питания у неё дома в Праге.

Большую часть 1921 года Кори работали отдельно. Герти работала в педиатрии в Каролинской детской больницы в Вене под руководством профессора Кноепфельмахера. Её исследования были связаны с лечением щитовидной железы для регулирования температуры у больного с врождённой микседемой и затем с исследованиями над кроликами с удалённой щитовидной железой. Несколько клинических научно-исследовательских работ были опубликованы на тему гематологических патологических изменений, включающих гемолитический криз и тромбоцитопению. Между тем Карл, так же в Вене, занимался работой в лаборатории по утрам и исследованиями в университете фармакологии по вечерам. «Мой наставник в клинике в Вене», как позднее он писал, «был великолепный, но аморальный врач-терапевт, который был ярым антисемитом». Карл осознавал что из-за того что Герти еврейка, их шансы на получение должности профессора в Европе ничтожно малы, что конечно стало важным фактором, подтолкнувшим их к переезду в Соединённые Штаты Америки.

Исследовательская работа в США

В 1922 году Кори прибыли в Соединённые Штаты Америки — Герти последовала за Кори спустя шесть месяцев — и заняли позиции в Нью Йоркском Государственном Институте для изучения малигнантных болезней (сейчас Росвелл парк). Первая публикация Герти, в 1923 году, по сравнению экстракта щитовидной железы и тироксина на скорость размножения парамеции, продолжает её ранний интерес к действию гормонов щитовидной железы.[8] В Буффало совместная исследовательская работа Кори быстро сфокусировалась на карбогидратном метаболизме in vivo и его гормональной регуляции. Для того чтобы ответить на вопрос количественно, они разработали надёжные методы анализа глюкозы, гликогена, молочной кислоты, и неорганических и органических фосфатов. Исследования Кори на опухолях в естественных условиях in vivo подтвердили патофизиологическую важность обнаруженного Васбургом in vitro повышенного аэробного гликолиза в опухолях, то есть образования молочной кислоты. Этот ранний интерес к молочной кислоте имел ещё большее значение в дальнейшей работе с эпинефрином.

В 1923[9] и 1924[10] Герти сама опубликовала серию из четырёх статей о влиянии рентгеновских лучей на кожу и на метаболизм органов тела.[11] Она интересовалась возможностью дифференцирования чувствительности к рентгеновским лучам окрашенной по сравнению с чистой кожей. Никто не может точно сказать, могло ли это раннее облучение привести позже к смертельному заболеванию костного мозга.

Изучение метаболизма гликогена

В Буффало модель развития исключительных аналитических методологий с большим вниманием к экспериментальным деталям, в сочетании с количественным обрамлением вопроса, стала отличительной чертой исследований Кори. В серии трёх элегантных публикаций[12][13][14], они представили количественные in vivo исследования баланса включающего краткосрочные (3 часа) улавливание эпинефрина (адреналина) которые показывали небольшое увеличение (+37 мг) в печении гликогена в условиях большого снижения общего (в основном мышцы) гликогена (-57 мг). (Из исследований на животных с удалённой печенью, гликоген мышц, как уже было известно, сам по себе не вносит непосредственный вклад в содержание глюкозы в крови.) Так как введение адреналина приводит к увеличению молочной кислоты в крови, повышение гликогена в печени, скорее всего, происходит из молочной кислоты, продукта распада мышечного гликогена перенесённого из мышц в кровь. Кори показали, что от 40 до 95 процентов Д-лактата (изомер образующийся в мышцах), съеден ли он или введён, был запасён как гликоген печени. L-лактат, противоестественный изомер, был запасён, но не только в виде гликогена печени. Тщательный контроль экспериментов исключал вазоконстрикцию и гипоксию, как причины увеличения молочной кислоты производимое введением адреналина. Артериовенозная разница измерений демонстрирует, что увеличение молочной кислоты в крови возникает от телесных (главным образом мышечных) источников. Кори назвали это особенное достижение «циклом углеводов», позже удачно назвали «циклом Кори».

Кори сосредоточили внимание на деталях в развитии основ аналитической методологии, что оказалось ещё более важным в анализе фосфатов гексозы, следующего интермедиата, который они тщательно исследовали. Ранее он показали, что только 40 процентов гликогена, который выводится из организма с введение адреналина, может быть объяснено как молочная кислота. Это дало толчок к созданию процедуры для анализа монофосфата глюкозы, тщательного метода основанного на измерении, как снижения мощности, так и содержания органических фосфатов высаждением водорастворимыми солями бария с этанолом. Кори осуществляли обе методики определения для более точной характеристики продукта.

В первых двух известных статьях[15][16] — в которых Герти Кори перечисляется как первый автор, предполагая что именно она в первую очередь отвечает за разработку количественных аналитических методов — Кори описали их методики. Во второй они показали, что содержание монофосфата гексозы возрастает с введением адреналина, но не с введением инсулина или глюкозы. Таким образом, началась работа по биохимическим основам для образования монофосфата гексозы при гликогенолизе и открытию глокозо-1-фосфата.

В 1931 году Герти и Карл переехал в Сент-Луис. Их работа сосредоточилась на действии адреналина, вызывающего гликогенолиз в мышцах. Они всё больше упрощали их экспериментальные системы, работая сперва с животными, затем с изолированными образцами мышц, затем с рубленым мясом и наконец, с препаратами разрушенных клеток. В Буффало они показали окончательно, что введение адреналина увеличивает содержание монофосфата гексозы в мышцах в пятнадцать раз за шестидесяти минут, с снижением основной концентрации в течение четырёх часов. Кроме того, они продемонстрировали снижение неорганических фосфатов при этих условиях и оценили, что накопление монофосфата гексозы было достаточно для учёта недостающего гликогена не учтённого как лактат.

С 1933 по 1936 год он выпустили ряд статей по образованию монофосфата гексозы в мышцах лягушек и крыс, особенно с введение адреналина и электрической стимуляцией, главным образом происходящего анаэробно.[17][18][19][20]

Осторожные измеряя содержание молочной кислоты, неорганического фосфата, креатинфосфата и АТФ, они пришли к выводу, что увеличение монофосфата гексозы получается при этерификации гликогена неорганическим фосфатом в результате стехиометрической реакции. Увеличение монофосфата гексозы происходит с эквивалентным уменьшением неорганического фосфата, без изменения содержания креатинфосфата или АТФ. Из трёх экзотермических химических реакций, происходящих в анаэробных мышцах (образование молочной кислоты, расщепление креатинфосфата, расщепление АТФ), только первая запускается при введении адреналина.

Кори фокусировались все меньше и меньше на лактате и больше на монофосфате гексозы. Они так же получили важные данные во время изучения обратной реакции, то есть восстановления в аэробных условиях, происходящее после удаления адреналина (или прекращения электрической стимуляции). Было показано, что монофосфат гексозы расходуется в три раза быстрей в аэробных условиях, чем в анаэробных. Увеличение содержания неорганического фосфата сопровождалось увеличением содержания монофосфата гексозы, но не увеличением содержания гликогена и молочной кислоты. В аэробных условиях гликоген был основным продуктом, но в анаэробных преобладала молочная кислота.

Эксперимент Кори на мышцах лягушки, отравленных иодоацетатом, оказался ключом, поскольку он показал, что потеря монофосфата гексозы была одинакова в отравленных и в неотравленных мышцах. Повторный анаэробный синтез гликогена из монофосфата гексозы, таким образом, произошёл сразу, без предварительного превращения в молочную кислоту.

Работа по выделению глюкозо-1-фосфата и дальнейшие исследования

Глюкозо-1-фосфат был впервые изолирован из промытой, измельчённой мышцы лягушки, инкубированной с неорганическим фосфатным буфером, в присутствии адениловой кислоты (1936).[21] В полном издании данной работы (1937) указали, что мышцы кролика проэкстрагировали водой, экстракт очистили от воды с помощью диализа и хранили в замороженном виде в толуоле. Фосфатный буфер, гликоген и адениловая кислоты были добавлены к экстракту. Реакционная смесь была инкубирована в течение тридцати минут при температуре 25 °C, очищена от белка, и доведена гидроксидом бария Ba(OH)2 до щелочного pH. Далее последовала процедура, разработанная для анализа фосфата гексозы, а именно осаждение спиртом. Снижение мощности до кислотного гидролиза давало гексозо-6-фосфат. Снижением мощности после кислотного гидролиза давало новый гексозо-1-фосфат. Исследователи получили около 500 миллиграмм глюкозо-1-фосфата бария из 750 миллиграмм гликогена.[21]

В данной статье, химический синтез глюкозо-1-фосфата главным образом воспроизведён за счёт работы Сидни Коловик. Химические свойства, кроме того, в том числе и константы диссоциации, были тщательно определены как для природных, так и для синтетических соединений и показано, что они идентичны. Очень мало можно добавить сегодня к химическим свойствам описанным исследователями лаборатории Кори, и статья представляет собой ещё одну веху в энзиматических исследованиях. Она также включает краткие ссылки на энзимологические исследования, которые будут играть столь большую роль в дальнейших работах Кори, таких как гидролиз глюкозо-1-фосфата фосфатазой кишечника и, в примечание, ферментативное превращении глюкозо-1-фосфата в 6-фосфат в присутствии ионов Mg2+.

Годы 1938 и 1939 были плодотворные, так как, после выделения ими глюкозо-1-фосфата, Кори сместили акцент своей работы в сторону энзимологии. Из десяти работ, опубликованных за этот период, Герти Кори была первым автором на семи, Карл на двух, и Сидни Коловик на одной.

В одной статье, написанной с Сидни Коловик, они изучали «миграцию» фосфатной группы глюкозо-1-фосфата в шестую позицию.[22] Опять, экстракты из мышц кролика были приготовлены, тщательно очищены от белка, и подвержены электродиализу для удаления ионов Mg2+, необходимых для реакции. Из числа изученных металлов, марганец Mn2+ оказался даже более эффективным, чем магний Mg2+. Маннозо-1-фосфат и галактозо-1-фосфат, синтезированные Сидни Коловик, как было показало, не превращаются в соответствующие 6-фосфаты под действием фермента, который сейчас называют фосфоглюкомутаза. Это происходит в соответствии с терминологией фосфоглицеромутазы, использованной ранее в работах Мейергофа и Кисслинга. Экстракты мышц кролика не содержали никакой обнаружимой фосфатазной активности, но превращение глюкозо-1-фосфата во фруктозо-1-фосфат было установлено, и фермент назвали «фосфогексоизомераза».

Основной ошибкой была неспособность исследователей признать работу фосфогексоизомеразы как обычную равновесную реакцию. Это было без сомнения связано с наличием изомеразы, которая искажала мутазную активность. Как отмечалось в дополнение, никакого эффекта инсулина (Zn-независимый) не было обнаружено ни на мутазную реакцию, ни на реакцию образования глюкозо-1-фосфата из гликогена. Это был ответ на ранний доклад Леманна, описывающий ингибиторный эффект Zn инсулина на мутазную реакцию.

Изучение работы основных ферментов в синтезе гликогена

Следующая статья описывает свойства фермента катализировать образование глюкозо-1-фосфата. Эта каталитическая активность была названа фосфорилазная.

Совместно с Герхардом Шмидтом, Герти и Карл начали изучать физиологическое значение их открытия глюкого-1-фосфата. Они обратили своё внимание на печень — орган, ответственный за образование глюкозы в крови. Предполагалось, что глюкоза в крови образуется в печени под действием фермента диастазы (амилазы). Альтернативный путь через действие фосфорилазы и глюко-6-фосфатазы уже были предложены Герти и Карлом.

Совместно с Герхардом Шмидтом, теперь они показали наличие в печени фосфорилазы и фосфатазы в условиях очень слабой активности амилазы. Фосфорилаза и фосфатаза были отделены друг от друга адсорбцией на алюминии. Фракционированием сульфатом аммония фосфорилаза была получена отдельно от мутазы и фосфатазы. Этот препарат фермента катализировал образование полисахарида в пробирке, из глюкозо-1-фосфата, который окрашивался в коричневый цвет при действии йода и был неотличим от гликогена. Адениловая кислота была необходима для фосфорилазной реакции для продолжения прямой, а не обратной реакции. Исследователи так же демонстрировали синтез гликогена в пробирке из экстракта мышц. В данном случае синтезированные полисахариды окрашивались в синий цвет с йодом, таким образом, больше напоминая крахмал. Вновь они подготовили статью, ставшую их визитной карточкой.

В коротком, но очень важном замечании, Герти и Карл сообщили об активирующем эффекте самого гликогена на синтез гликогена из глюкозо-1-фосфата. Точная корреляция экспериментальных данных выявила важное отличие между тем, когда синтез гликогена проводился из препаратов других тканей. Для препаратов из других тканей, всегда обнаруживался период отставания переменной длины в синтезе гликогена. В сравнение, с препаратами печени, никакой период отставания не наблюдался. (Никакого отставания не наблюдалось с любым препаратом фермента, когда реакция шла в сторону распада гликогена). Так как препараты фосфорилазы печени всегда содержали, в то время как в других препаратах ферментов было обнаружено небольшое количество гликогена или его полное отсутствие, исследователи решили изучать влияние добавления гликогена во время периода запаздывания. Добавление гликогена ликвидировало период отставания, и, Герти и Карл обосновали, «можно заключить, что этот фермент, который синтезирует высокомолекулярные соединения — гликоген, требуется присутствие незначительного количества этого соединения для того, чтобы начать деятельность». Так началась концепция синтеза гликогена на исходной основе. Вновь, итоговая публикация Герти и Карла была элегантным описанием кинетики фермента. Константы Михаэлиса были определены для глюкозо-1-фосфата, для адениловой кислоты, а также для гликогена с препаратами ферментов, как из мозга, так и из мышц. Реакционное равновесие измерялось как функция pH, и порядок реакции был определён. Кроме того, было показано, что глюкоза ингибирует реакцию конкурентно с глюкозо-1-фосфатом.

Препараты фосфорилазы из мозга, сердца или печени синтезируют гликоген, который окрашивается в коричневый цвет с йодом; в то время как, препараты фосфорилазы из мышц синтезируют гликоген, который окрашивается в синий с йодом. Это чрезвычайно интересное наблюдение привело к моей последующей работе по ветвящимся ферментам. В статье, опубликованной с Ричардом Биром, они сравнили дифракцию рентгеновских лучей образцов двух типов ферментативно синтезированного гликогена с препаратом из растительного крахмала, и обнаружили, что образцы синих йодо-окрашиваемых полисахаридов, синтезированных фосфорилазой мышц, были очень похожи на крахмал растений. Коричневое окрашивание с йодом показало только диффузную структуру, характеристику аморфных материалов. С Зев Хасид они показали, что окрашиваемые йодом в синий цвет полисахариды, синтезированные ферментом мышц, были похожи на неразветвлённые фрагменты крахмала под названием «амилоза». Исследования пищеварения с B амилазой, совместно с химическим метелированием и исследования гидролиза, определили синтетический полисахарид, как 1,4-связанный полимер глюкозы со средней длинной цепи около 200.

Совместно с Эрлом Сазерлендом, Сидни Коловик и Карлом, Герти создала последовательность реакций получения гликогена из глюкозо-6-фосфата, отделяя фосфорилазы от мутаз и изомераз. В дальнейшем исследователи обратили внимание на ранее незамеченное мутазное равновесие и численно охарактеризовали его. Осаждением неорганического фосфата, выпущенного фосфорилазой, в качестве Ba3(PO4)2, они «вытащили» набор реакций — мутазы и фосфорилазы — направленных на синтез гликогена против неблагоприятного мутазного равновесия.

Работы по кристаллизации фосфорилаз

Экспериментальное чутье Герти в дальнейшем стало очевидным в работах, написанных совместно с Ардой Грин и Карло, описывающих кристаллизацию мышечной фосфорилазы. Стадии были установлены до фракционирования фермента, отделённого от мутазы и изомеразы. Затем в 1943 году, появился определённый набор из четырёх статей по кристаллизации мышечной фосфорилазы. В первой, Арда Грин и Герти Кори описали подготовку и физические свойства фосфорилазы, в том числе и молекулярную массу. Во второй, Герти и Арда Грин приписали простетические группы двум формами фермента, a и b, которые как было показано превращаются друг в друга третьим ферментом называемы «PR» для обозначение prosthetic group removing (удаление простетических групп). Удаление простетических групп, однако, считалось, осуществляется адениловой кислотой, и позднее было показано, что это неправильно. Третья статья — Карла, Герти и Арды — описывала кинетику реакции, в то время как четвёртая статья, Герти и Карла, была связана с образованием гликогена. В ней для нового фермента было описано, что разрешается преобразование синего окрашивания полисахарида йодом в коричневое окрашивание гликогена. Новый фермент, считалось, должен быть новой фосфорилазой, которая синтезирует 1,6-связь или фермент, связанный с амилазой.

Это статьи, по которым я развил научную хватку, и — за исключением работ по «PR» ферменту — они остаются классикой в своей области. Кристаллизация фосфорилазы a из мышц и признание второй формы b, совестно с их последующими кристаллизациями Карлом и Герти, начали эпоху контроля ковалентного фосфорилирования и влияния алостерических эффектов — так как две формы, как было признано, проявляют различную чувствительность к адениловой кислоте. Корректная химия взаимопревращения между двумя формами a и b впоследствии была выявлена Кребсом и Фишером; Сазерлендом и Райл, и их сотрудниками. Лаборатория Кори продолжила успешно кристаллизовать дополнительные ферменты гликолиза. Герти, совместно с Карлом и Милтоном Слейн, закристаллизовали экстракт d-глицеральдегид-3-фосфатдегидрогеназу и, совсместно с Джоном Тейлором и Ардой Грин, альдолазу. В то время как Карл, Эрл Сазерленд и Тео Постернак интересовались ферментативными механизмами (в частности, изучение мутазной реакции), Герти и я продолжили изучать структуру гликогена. Работы по гормональной регуляции Карла, Вин Прайс и Сидни Коловик, которые вызвали такой фурор, были прекращены. Они были позже возобновлены по различным направлениям Майклом Крол, Джо Борнстеном, Ролло Парком и их сотрудниками, которые изучали действие инсулина, и Сазерлендом, Рейлом и их сотрудниками, изучавшими действие адреналина и глюкагона.

Воспоминания Джозефа Ларнера[23]

Открытие деветвящего фермента

Я приехал в Сент-Луис с 1949 году, проведя восемнадцать месяцев в биохимическом отделении факультета химии в университете Иллинойса, получая степень магистра в области химии. По прибытии я был поручен под руководство Герти Кори и сразу же начал программу научных исследований. В это время Герти была особенно заинтересована в изучении распада связи 1,6 или точки ветвления в гликогене. Шломо Хестрин, который курировал меня в Сент-Луисе, обнаружил, что высоко перекристаллизованная фосфорилаза мышц расщепляет гликоген лишь частично (около 40 процентов), в то время как сырая фосфорилаза расщепляет гликоген полностью. Мне была поставлена задача найти то, каким образом сырой фермент обходит или расщепляет точки ветвления. Благодаря работе Аллена Джинса, Мелвина Волфрома и их сотрудников, 1,6-связанный дисахарид, изомальтоза, только стала доступна. У нас был небольшой, довольно ценный образец, который мы использовали в качестве стандарта в бумажном хроматографическом анализе продуктов ферментативного расщепления гликогена из сырого или высоко очищенного препарата фосфорилазы. Когда реакционная смесь была обработана, чтобы удалить фосфаты гексозы, анализ показал наличие только свободной глюкозы, и изомальтоза не была обнаружена. Мы предложил, поэтому, механизм гидролитического расщепления 1,6-связи, с образованием свободной глюкозы в качестве единственного продукта реакции. Деветвящий фермент был назван амило-1,6-глюкоксидаза. Действуя совместно с фосфорилазой, амило-1,6-глюкоксидаза полностью разлагала гликоген до смеси около 90 % гексозо-1-фосфата и 10 % свободной глюкозы. Уильям Уилан впоследствии показал, что этот фермент имеет две активности: первая, перемещать несколько остатков глюкозы на продукт действия фосфорилазы на гликоген, так что отдельные 1,6-связанные глюкозные остатки были выявлены (трансферазная активность); вторая, катализировать гидролиз 1,6-связи, выделяя свободную глюкозу.

Я до сих пор помню волнение Герти, когда я обнаружил свободную глюкозу в качестве единственного продукта реакции. Она побежала по коридору в офис Карла на другом конце факультета выкрикивая «Это свободная глюкоза, это свободная глюкоза!» Я продолжил работать с Герти, используя новый фермент амило-1,6-глюкоксидазу и фосфорилазу в последовательном порядке для того, чтобы проработать расположение точек ветвления в гликогене и в амилопектине, разветвлённой составляющей крахмала. Герти так же продолжила работать с Пэтом Келлер по «PR» взаимно заменяющему ферменту. Они обнаружили, что в процессе превращения фосфорилазы a в b, молекулярная масса уменьшилась вдвое, и Карл сразу же переименовал «PR» фермент в фосфорилазу разрыва.

Я в дальнейшем разрабатывал механизм ветвления фермента, в то время как Герти осуществляла независимые исследования по гексокиназам с Милтоном Слейном и — с Северо Очоя, Милтон Слейн, и Карлом в 1951 — по фосфорилированию фруктозы и метаболизму в печени.

Последние научные исследования

Безоговорочно её наибольшим интересом в последние годы была природа ферментативных дефектов в болезни накопления гликогена, возвращение, в каком-то смысле, к её подлинным интересам — к педиатрии. Я впервые рассмотрел, а затем предложил Герти возможность того, что болезнь — тогда считавшаяся единственной, называемой болезнь фон Гирке — может быть связана с отсутствием деветвящего фермента, амило-6-глюкоксидазы. Но Герти почувствовала, что отсутствующим ферментов была глюкозо-6-фосфатаза. Позади нас в лаборатории стоял химический кабинет, который содержал, среди прочего, набор образцов гликогена Герти, изолированных из тканей, посланных её многочисленными клиническими исследователями, заинтересованными этой болезнью. Я рассуждал что, если бы я был прав, гликоген сам по себе бы обладал ненормальной структурой, с укороченными внешними цепями, но с нетронутыми точками ветвления. Если Герти была права, структура гликогена была нормальной. Мы сделали ставку на результат — рядовое событие в лаборатории. С её разрешения я поспешил взять одну из проб гликогена из кабинета, растворить небольшую аликвоту в воде и окрасить несколькими каплями йода раствор в пробирке. К изумлению обоих, Герти и меня, проба окрасилась йодом в голубовато-фиолетовый цвет, больше похожий на крахмал, чем на гликоген! Этот образец был направлен Дороти Андерсон, моему бывшему преподавателю педиатрии в Колумбийском Колледже врачей и хирургов. По счастливой случайности, это был единственный образец в коллекции с ненормальным окрашивание йодом.

Я сразу продумал объяснение, утверждая, что точки ветвления были целы, но внешние цепи были вытянуты, поскольку ребёнок в состоянии хорошего питания, так что внешние цепи были построены. Герти очень обрадовалась, признавая, что с аномальной структурой гликогена, болезнь накопления гликогена является молекулярной болезнью. (Единственным примером молекулярных болезней, известных в то время была болезнь Полинга серповидно-клеточного гемоглобина.)

Герти начала изучать эту проблему интенсивно. Вскоре стало ясно, что это была на самом деле болезнь с несколькими ферментативными дефектами. Она была в состоянии зарегистрировать четыре формы, одна связана с отсутствием глюкозо-6-фосфатазы в печени, вторая связана с отсутствием амило-6-глюкоксидазы с обобщённым распространением в органах, третья связана с отсутствием фермента ветвления, ответственного за голубовато-фиолетовое окрашивание гликогена, а четвёртый неизвестной этиологии, приводящий к обобщённой болезни органов. Герти Кори обобщила эти данные в лекции Харви в 1952 году. Обе наши гипотезы были правильными. Её последней опубликованной работой, в 1957 году, было ревью о болезни накопления гликогена.

Кори Герти — какой она была

Герти была неутомимым научным работником и заядлым читателем. Она была во все времена превосходным экспериментатором и аналитиком с наиболее требовательным высоким стандартом. Хотя я прибыл в Сент-Луис со статьёй уже опубликованной в Journal of Biological Chemistry, она лично научила меня как пользоваться пипеткой, смотрела через плечо как я получил мою первую кривую для анализа глюкозы, объяснила мне, как кристаллизовать мышечную фосфорилазу, и попросила Эрла Сазерленда научить меня кристаллизовать калиевую соль глюкозо-1-фосфата. Она постоянно была в лаборатории, где мы оба работали поодиночке. Мы мыли нашу собственную лабораторную посуду, и она время от времени горько жаловалась на Карла, что он никогда не помогал ей мыть посуду. Когда она уставала, она могла уйти отдохнуть в её небольшой офис, примыкающий к лаборатории, где она могла отдохнуть на маленькой кроватке. Она курила не переставая и бросала сигаретный пепел на покрытые лаком лабораторные скамейки. Я часто думал, если бы это помогло в кристаллизации фермента.

Герти обладала бодростью и любовью к науке и открытиям, которые были заразительны. Она хотела делать захватывающие открытия в первую очередь, а затем делать необходимый контроль позже. Она и Карл обладали инстинктивным «чутьём» к верным путям по которым надо следовать, чтобы решить эту проблему. Ей нужна была только одна захватывающая находка, чтобы окунуться в проблему с неограниченной силой. За эти годы её здоровье ухудшилось, и Карл был лично вовлечён в мониторинг гемоглобина в крови и проведения переливания крови. Тем не менее, болезнь никогда не влияла на работу в лаборатории. Герти была чрезвычайно широко начитана. Mercantile Library была организацией в Сент-Луисе, из которой любой заказывал книги по телефону. Герти обычно брала от пяти до семи книг, которые доставляли в лабораторию или в офис на факультете. К концу недели она могла прочитать их все, приведя к следующей недели в порядок. Это происходило неделю за неделей. Она могла говорить авторитетно на различные темы, от политической теории, социологии, искусства и гуманитарных наук, до продуктовых магазинов. Её интеллектуальная широта никогда не переставала удивлять меня. «Я чувствую себя самым везучим, пройдя обучение у Герти и Карла, будучи студентом и имея возможность насладиться их подходом к решению научных проблем.»

Степени

  • 1914—1920 − Степень магистра, Университет Карла-Фердинанда, Прага, Чехословакия
  • 1920—1921 − Клиническая практика в педиатрии, Каролинский детский госпиталь, Вена, Австрия
  • 1921—1922 − Факультет патологий, Институт Нью-Йорка, изучение Малигнантных болезней (Росвелл Парк), Буффало, Нью-Йорк
  • 1931—1947 − Профессор фармакологии, Отделение медицины Вашингтонского Университет, Сент-Луис, Миссури
  • 1947—1957 − Профессор биохимии, Отделение медицины Вашингтонского Университет, Сент-Луис, Миссури

Награды

  • 1946 − Midwest Award Американского химического общества
  • 1947 − Squibb Award Ассоциации по изучению внутренней секреции
  • 1947 − Совместно с Карлом Кори, Нобелевская премия по физиологии и медицине
  • 1948 − Frances P. Garven Medal, Американского химического общества
  • 1948 − St. Louis Award
  • 1950 − Sugar Prize, Национальной академии наук США
  • 1951 − Borden Award, Ассоциации американских медицинских колледжей

Память

В 1979 г. Международный астрономический союз присвоил имя Герти Терезы Кори кратеру на обратной стороне Луны.

Примечания

  1. Czech National Authority Database
  2. Ogilvie M. B. The Biographical Dictionary of Women in Science (англ.): Pioneering Lives From Ancient Times to the Mid-20th CenturyRoutledge, 2003. — Vol. 1. — P. 292. — 798 p. — ISBN 978-1-135-96342-2
  3. Studenti pražských univerzit 1882–1945
  4. Gerty Cori (англ.)
  5. Holocaust Journey: Traveling in Search of the Past
  6. Larner J. Gerty Theresa Cori. 1896—1957 // Biographical memoirs. National Academy of Science. Washington, 1992, p. 111—135
  7. With C. F. Cori. Über den Gehalt des menschlichen Blutserums an Komplement und normal Ambozeptor für hammelblut-körperchen // Z. Immunititaetsforsch., 1920, B. 29, S.44
  8. The influence of thyroid extracts and thyroxin on the rate of multiplication of paramecia. Am. J. Physiol. 65:295-99.
  9. The effect of x-ray on the skin of vitally stained white mice. Proc. Soc. Exp. Biol. Med. 21:123.
  10. Comparison of the sensitiveness of different organs of the mouse toward x-ray. /. Cancer Res. 8:522.
  11. The effect of x-ray on the skin of vitally stained white mice. / Exp. Med. 39:639-43.
  12. With C. F. Cori. The mechanism of epinephrine action. I. The influence of epinephrine on the carbohydrate metabolism of fasting rats with a note on new formation of carbohydrates. /. Biol. Chem. 79:309-19
  13. With C. F. Cori. The mechanism of epinephrine action. II. The influence of epinephrine and insulin on the carbohydrate metabolism of rats in the post absorptive state. /. Biol. Chem. 79:321-41
  14. With C. F. Cori. The mechanism of epinephrine action. HI. The influence of epinephrine on the utilization of absorbed glucose. /. Biol. Chem. 79:343-55.
  15. With C. F. Cori. A method for the determination of hexose mono-, phosphate in muscle. /. Biol. Chem. 94:561-79.
  16. With C. F. Cori. The influence of epinephrine and insulin injections on hexosemonophosphate content of muscle. J. Biol. Chem. 94:581-91.
  17. With C. F. Cori. Changes in hexose phosphate, glycogen, and lactic acid during contraction and recovery of mammalian muscle. / Biol. Chem. 99:493-505
  18. With C. F. Cori. A comparison of total carbohydrate and glycogen content of mammalian muscle. /. Biol. Chem. 100:323-32.
  19. With A. H. Hegnauer. The influence of epinephrine on chemical changes in isolated frog muscle. /. Biol. Chem. 105:691-703.
  20. With A. H. Hegnauer* R. E. Fisher, and C. F. Cori. Fate of hexose monophosphate during aerobic recovery of frog muscle. Proc. Soc. Exp. Biol. Med. 32:1075.
  21. With C. F. Cori. Mechanism of formation of hexose monophosphate in muscle and isolation of a new phosphate ester. Proc. Soc. Exp. Biol. Med. 34:702-5.
  22. With S. P. Colowick and C. F. Cori. The enzymatic conversion of glucose-1-phosphoric ester to 6-ester in tissue extracts. /. Biol. Chem. 124:543-55.
  23. Gerty Theresa Cori Архивировано 30 июля 2014 года.

Ссылки

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.