Всемирная космическая обсерватория — Ультрафиолет

«Спектр-УФ» («Всемирная космическая обсерватория — Ультрафиолет», сокр. ВКО-УФ, англ. World Space Observatory — Ultraviolet, сокр. WSO-UV) — космический телескоп, предназначенный для получения изображений и спектроскопии[2] в недоступном для наблюдений с наземными инструментами ультрафиолетовом (УФ) участке электромагнитного спектра: 100—320 нм[3]. Третий из аппаратов серии «Спектр» (первый — запущенный 18 июля 2011 года «Спектр-Р», второй — запущенный 13 июля 2019 года «Спектр-РГ», четвёртый — «Спектр-М»).

Спектр-УФ
Всемирная космическая обсерватория
Заказчик Институт астрономии РАН
Производитель НПО имени С. А. Лавочкина
Оператор НПО имени С. А. Лавочкина
Спутник Земли
Стартовая площадка Восточный
Ракета-носитель Ангара-А5[1]
Запуск конец 2025 - начало 2026 годов
Технические характеристики
Платформа «Навигатор»
Масса 2 840 кг
Размеры 13,6×9,6 м
Мощность 1 000 Вт
Источники питания солнечные батареи
Ориентация двойной контур наведения: грубый при помощи звёздных датчиков, и точный при помощи системы датчиков гида
Движитель комплекс управляющих двигателей-маховиков
Элементы орбиты
Тип орбиты 24-х часовая круговая геосинхронная
Наклонение 51,4
Высота орбиты 35 800 км
Целевая аппаратура
Телескоп Т-170М основной рабочий инструмент миссии, телескоп системы Ричи-Кретьена с диаметром главного зеркала 1,7 м и фокусным расстоянием 17 м
wso.inasan.ru/rus/
 Медиафайлы на Викискладе

Поскольку ближайший конкурент «Спектра-УФ» — космический телескоп имени Хаббла — заканчивает в недалеком будущем свою работу на орбите, а работа над крупным ультрафиолетовым телескопом, которая занимает не менее 10 лет, не начата ни одним космическим агентством, проект «Спектр-УФ» будет единственным крупным прибором для спектроскопии высокого разрешения в ультрафиолетовой области спектра примерно до 2035 года.

Цели и задачи

«Спектр-УФ» откроет новые возможности для исследований планет, звездной, внегалактической астрофизики и космологии. С его помощью планируется изучать физико-химические свойства планетных атмосфер и комет, физика атмосфер горячих звёзд и хромосферной активности холодных звёзд, свойства пылевых частиц межзвёздного и околозвёздного вещества, природы активных галактических ядер, межгалактических газовых облаков и гравитационных линз. Обсерватория позволит определять важные для выбора космологической модели соотношения содержания лёгких элементов и их изотопов. Подобные «Спектру-УФ» проекты появятся за рубежом не ранее 2035 года[4].

Экзопланетология

В отличие от «Кеплера», «Спектр-УФ» — не обзорный аппарат, поэтому заниматься простым поиском планет он не будет. Его цель принципиально другая: наблюдение ранее открытых экзопланет с целью изучения их атмосферы и, в частности, поисков на них признаков жизни.

Поиск скрытого барионного вещества

Важная задача «Спектра-УФ» — поиск ранее незамеченного барионного вещества (по ряду оценок, до половины всего барионного вещества всё ещё не учтено), или «невидимой обычной материи», то есть газа и пыли, трудно различимых для уже существующих телескопов. «Спектр-УФ» будет искать «невидимые» облака газа в космосе за счёт их «просвечивания» далекими квазарами, активными ядрами галактик, в центрах которых находятся сверхмассивные чёрные дыры.

История

Проект космической обсерватории «Спектр-УФ» был задуман ещё в начале 1990-х годов, а запуск первоначально намечался на 1997 год, однако трудности в финансировании не позволили вовремя реализовать проект. Такая задержка позволила разработчикам за это время внести ряд усовершенствований и существенно облегчить конструкцию телескопа. Запуск телескопа перенесли с 2021 на 2026 год в связи с резким сокращением финансирования[5].

Разработка аппарата

  • В октябре 2012 года завершены испытания антенн для «Спектра-УФ».
  • В августе 2013 специалисты НПО имени Лавочкина закончили вибростатические и тепловакуумные испытания телескопа Т-170М, входящего в состав космического телескопа «Спектр-УФ»[7].
  • 8 апреля 2014 от британской компании e2v поступила информация о временной приостановке со стороны США лицензии на поставку в Россию радиационно-стойких компонент, входящих в состав разрабатываемых этой компанией полупроводниковых детекторов (в случае со «Спектр-УФ» это лётный образец приёмника излучения для спектрографа). Компания предложила переработать детектор с целью исключения комплектующих, подпадающих под ограничения ITAR. Однако сроки поставки при этом сместились на два года[8]. Ранее США не блокировали поставки компонентов для научно-исследовательских космических аппаратов[9]. По состоянию на середину 2017 года России была лишь передана аппаратура для конструкторско-доводочных испытаний, а работа в Британии над созданием лётного образца приостановлена. Такое развитие событий может привести к тому, что лётные образцы для телескопа так и не будут поставлены.
  • В декабре 2014 года испанские партнёры сообщили, что приостановили создание камер поля из-за финансовых проблем[10]. Были проработаны различные варианты создания камер в России[8], в результате чего работы были переданы Институту космических исследований и Институту астрономии РАН. В то же время Испания изготовит дополнительную ультрафиолетовую камеру для поиска экзопланет. Но при неготовности техники или обострении международных отношений эта аппаратура может быть вовсе исключена без большого ущерба для проекта.
  • 25 июня 2015 года состоялось заседание совета главных конструкторов по КК «Спектр-УФ», по результатам обсуждения сроки запуска были сдвинуты на май 2021 года[11][12].
  • В начале октября 2016 года стало известно, что учёными Томского государственного университета разработаны защитные экраны от мелких фрагментов космического мусора и микрометеоритов.
  • В конце мая 2017 года в СМИ появилась информация о вероятном переносе запуска обсерватории с 2021 на 2024 год в связи с секвестром бюджета и изменением Роскосмосом сроков финансирования разработки аппарата[13].
  • В июне 2018 года Роскосмос сообщил о переносе запуска на 2024 год. Его планируется осуществить с космодрома Восточный[1].
  • В начале октября 2018 года директор Института астрономии РАН (ИНАСАН) Дмитрий Бисикало в интервью СМИ сообщил, что в настоящее время ведутся переговоры с Японией по инициативе японских астрофизиков об их участии в проекте в области поставки спектрографа для исследований экзопланет и с Мексикой по инициативе мексиканских астрофизиков о поставке оптических элементов в блок камер поля проекта «Спектр-УФ». Кроме того, заканчивается изготовление образцов для конструкторско-доводочных испытаний и начинается работа над изготовлением лётных образцов аппаратуры. Решён наиболее критичный для проекта вопрос с изготовлением радиационно стойких малошумящих приёмников ультрафиолетового излучения. Эти приёмники изготавливаются по заказу Института астрономии в Великобритании и Испании. Получены все экспортные лицензии для поставки данного оборудования в Россию[14].
  • 17 января 2019 года министр науки Испании Педро Дуке сообщил СМИ, что испанское правительство выделило средства на создание научного оборудования для «Спектра-УФ»[15].
  • 22 января 2019 года научный руководитель Института астрономии Борис Шустов в интервью СМИ рассказал, что финансирование «Спектра-УФ» на 2020 год сокращено в 15 раз[16].
  • 11 февраля 2019 года заместитель директора по научной работе Института астрономии РАН Михаил Сачков сообщил СМИ, что создание «Спектра-УФ» завершено на 70 %: наземная стадия подготовки почти завершена, частично начато изготовление лётных образцов для телескопа. Срок запуска будет зависеть от финансирования проекта, никаких технических и политических проблем сейчас нет[17].
  • 12 февраля 2019 года заместитель директора по научной работе Института астрономии РАН Михаил Сачков сообщил СМИ, что Япония приступила к разработке прибора для «Спектра-УФ», несмотря на отсутствие соглашения с Роскосмосом. Также интерес к проекту проявляет Мексика. Её участие поможет удешевить проект[18].
  • 13 февраля 2019 года заместитель директора Института астрономии РАН Михаил Сачков сообщил СМИ, что Роскосмос намерен в 2019 году в три раза сократить финансирование на разработку, в 2020 году — ещё в 10 раз, а в 2021 — снизить финансирование почти до нуля. Таким образом, предлагается снизить исходное финансирование в 15 раз, что фактически замораживает работы над созданием обсерватории. В случае, если секвестр произойдет, запуск аппарата может состояться не ранее 2026 года. Учёный не уточнил, о какой необходимой для завершения создания телескопа сумме идёт речь, однако источник в ракетно-космической отрасли пояснил СМИ, что на завершение проекта необходимо финансирование в размере 1 миллиарда рублей ежегодно в течение четырёх-пяти лет[5].
  • 19 марта 2019 года заместитель директора Института астрономии РАН Михаил Сачков сообщил СМИ, что Япония подписала на прошлой неделе с Россией письмо о намерении участвовать в разработке спектрографа для исследований экзопланет. Япония готова выделить деньги для реализации проекта, но для этого странам ещё предстоит заключить соглашение. Сейчас разрабатывается необходимая документация для проекта[19].
  • 24 мая 2019 года источник в ракетно-космической отрасли сообщил СМИ, что к настоящему моменту успешно пройдены вибродинамические и термовакуумные испытания отработочных изделий телескопа. Существующий график предусматривает завершение проектирования блока камер поля (научный инструмент обсерватории, предназначенный для построения высококачественных изображений в ультрафиолетовом и оптическом участках спектра) в июне 2019 года, а также завершение в первой половине 2022 года сборки и интеграции комплекса научной аппаратуры[20].
  • 6 июля 2019 года заместитель директора по научной работе ИНАСАН Михаил Сачков сообщил СМИ, что институт до апреля собирал заявки на эксперименты для «Спектра-УФ», и к настоящему моменту отобрал семь[21].
  • 13 августа 2019 года заместитель директора ИНАСАН по научной работе Михаил Сачков сообщил СМИ, что предварительно существующих резервов по массе и энергопитанию будущей обсерватории достаточно будет для размещения лишь одного из двух предлагаемых японских приборов — спектрографа для экзопланет; от коронографа придётся отказаться. В настоящее время ИНАСАН готовит материалы для Роскосмоса для принятия решения по участию Японии в проекте: госкорпорация запросила план-график работ и параметры прибора[22].
  • 1 ноября 2019 года заместитель директора ИНАСАН по научной работе Михаил Сачков сообщил СМИ, что Испания поставит в 2020 году приёмник излучения для установки на «Спектр-УФ»; график работ испанской стороны изначально идёт с опережением российского[23].
  • 13 сентября 2020 года заместитель директора ИНАСАН по научной работе Михаил Сачков сообщил СМИ, что Россия и компания E2V решили вопрос поставок попавшей под санкции электроники для «Спектра-УФ»: из Великобритании получены образцы лётных изделий — блоки электроники для приемника излучения. Согласно действующему контракту, поставку всей аппаратуры должны завершить в 2022 году[24].
  • 16 июля 2021 года директор ИНАСАН Дмитрий Бисикало сообщил СМИ, что между Японией и Роскосмосом подписан договор на создание спектрографа, 10 дней назад российская сторона получила подтверждение о начале разработки прибора[25].
  • 4 сентября 2021 года заместитель директора ИНАСАН Михаил Сачков сообщил СМИ, что между Роскосмосом JAXA подписано соглашение об изготовлении японской стороной совместно с ИНАСАН и ИКИ РАН спектрографа для исследования атмосфер экзопланет[26].
  • 15 октября 2021 года заместитель директора ИНАСАН Михаил Сачков Михаил Сачков сообщил СМИ, что подписание еще одного контракта на создание «Спектра-УФ» планируется в начале следующего года, поскольку подписанный в июле 2021 года контракт не был завершающим и не включал, например, услуги по запуску[27].

Подготовка и запуск

  • В Федеральной космической программе на 2006—2015 гг. запуск «Спектра-УФ» значился в 2016 году.
  • 21 мая 2019 года источник в ракетно-космической отрасли сообщил СМИ, что «Спектр-УФ» будет запущен 23 октября 2025 года вместо планируемого ранее 2024-го года. Такое решение было принято после пересмотра Федеральной космической программы. Пресс-служба Роскосмоса подтвердила эту информацию. Выбор ракеты-носителя для вывода «Спектра-УФ» на орбиту будет зависеть от лётных испытаний «Ангары-А5» (резервный вариант — «Протон-М»). По словам источника, аппарат рассчитывают вывести на геосинхронную орбиту наклонением 35-40 градусов, что обеспечит круглосуточную связь с обсерваторией[28].
  • Финальная подготовка и транспортировка «Спектра-УФ» к месту запуска запланированы на период с конца июля по начало сентября 2025 года[20].
  • 16 июля 2021 года вице-президент РАН Юрий Балега сообщил СМИ, что с такими темпами работ по обсерватории запуск может сдвинуться на 2027 год, директор ИНАСАНа Дмитрий Бисикало, напротив, считает, что запуск миссии можно ожидать в 2025 году[25].
  • Август 2021 года — в материалах Росатома, распространенных на международном военно-техническом форуме «Армия-2021», запуск Спектр-УФ планируется после 2025 года на ракете-носителе «Ангара-А5М» с космодрома Восточный[29].
  • 15 октября 2021 года заместитель директора ИНАСАН РАН Михаил Сачков Михаил Сачков сообщил СМИ, что институт строит свой график работ так, чтобы запуск «Спектра-УФ» состоялся в конце 2025 года, но все зависит от ритмичности выделения финансирования. Запуск обсерватории будет возможен как на ракете-носителе «Ангара-А5М» с космодрома Восточный, так и на «Протоне-М» с Байконура[27].

Характеристики

Макет космического аппарата Спектр-УФ на МАКС-2013

Космический аппарат «Спектр-УФ» будет состоять из разработанного в НПО имени С. А. Лавочкина многоцелевого служебного модуля «Навигатор», двигательной установки довыведения и УФ-телескопа в качестве полезной нагрузки. Масса нового модуля «Навигатор» почти в 3 раза меньше, чем у планировавшейся ранее универсальной платформы «Спектр». Это обстоятельство, а также некоторые мероприятия по уменьшению массы телескопа и конструкции научных инструментов привели к тому, что стало возможным осуществить запуск научного комплекса на более дешёвом носителе среднего класса.

Стартовая масса комплекса составит около 2 500 кг. Обсерваторию планируется запустить с помощью ракеты-носителя «Зенит-2»[30] также прорабатывается вариант с ракетой-носителем «Протон». В последнем случае возможно размещение телескопа на геостационарной орбите[2]. Расчётный срок активного существования телескопа составит не менее 5 лет.

По состоянию на 2018 год запуск планируется с помощью ракеты-носителя Ангара-А5.

Научная аппаратура

Основной инструмент — ультрафиолетовый телескоп Т-170М с диаметром главного зеркала 170 см и фокальным отношением 10[2]. Использована схема Ричи-Кретьена, фокусное расстояние 17 метров, поле зрения — 30 угловых минут. Изготовлением оптических элементов занимается Лыткаринский завод оптического стекла[31].

Блок спектрографов состоит из трёх приборов: ВУФЭС, УФЭС — два эшельных спектрографа высокого разрешения и СДЩ — спектрограф с длинной щелью. Эти приборы позволят изучать спектры звёзд вплоть до 15−17 звёздной величины. Прибор СДЩ предназначен для получения спектров низкого разрешения точечных и протяженных объектов[31]. Спектрографы производятся в России, изначально планировалось участие других стран[2].

Блок камер поля состоит из трёх камер работающих в разных спектрах: ближний ультрафиолет (150—280 нм), дальний ультрафиолет (115—190 нм) и оптический диапазон (200—800 нм). Они позволят получать изображения в УФ и видимом диапазонах объектов вплоть до 30 звёздной величины[31]. Приёмник излучения для канала диапазона дальнего УФ (115—180 нм) создаётся в Испании компанией SENER при научном руководстве ИНАСАН и Университета Комплутенсе Мадрида. Приёмник излучения для канала ближнего УФ (180—300 нм) приобретается в другой компании.

Вспомогательные системы

Система датчиков гида (СДГ) состоит из трёх датчиков расположенных в центральной части фокальной поверхности телескопа. Они позволят осуществить наведение и стабилизацию телескопа во время сеанса наблюдения с точностью до 0,03". Разрабатывается в Институте космических исследований РАН[31].

Блок управления научными данными (БУНД) осуществляет следующие функции:

  • передача команды от служебного модуля «Навигатор» научным приборам;
  • управление режимами работы научными приборами либо по циклограмме, либо транслируя их непосредственно;
  • передачу или накопление данных от научных приборов, включая телеметрию.

Объём памяти составляет 4 Гб. Для связи с приборами используется сеть научных данных стандарта SpaceWire. Разработку блока также осуществляет Институт космических исследований РАН[31].

Передача данных

Сброс научной информации на Землю будет производиться в режиме реального времени со скоростью 65 кбод, а также в режиме воспроизведения ранее записанной информации через штатный радиокомплекс со скоростью 1 Мбод.

Защита корпуса спутника

В Томском государственном университете была разработана двухслойная система защиты спутника от механических повреждений микрометеоритами. Система была проверена на стенде. При этом производились выстрелы металлическими частицами весом 0,3 грамма со скоростью 8 км в секунду из легкогазовой пушки по разрабатываемым преградам. В результате испытаний был получен результат, подтверждающий, что данная конструкция обеспечивает максимально эффективную защиту корпуса спутника. Эксперимент подтвердил, что остатки фрагментов, раздробленные сеткой попадают на экран и рассеиваются, не нанося ущерба космическому аппарату[32].

Участники проекта

Проект возглавляется Россией, включён в Федеральную космическую программу на 2006—2015 гг. Основные партнёры — Россия и Испания, также участвуют Украина и Германия. Казахстан, Индия и ряд других стран проявляет интерес к участию в проекте[3].

Проект ВКО-УФ основан на новой организационной концепции, основой которой является максимально широкая международная кооперация и максимально открытый доступ к наблюдательным возможностям.

Головная научная организация проекта — ИНАСАН. Головной организацией по ракетно-космическому комплексу является НПО имени Лавочкина.

Россия

Испания

Германия

Украина

Сравнение с другими проектами

По возможностям проект ВКО-УФ сравним с космическим телескопом им. Хаббла и превосходит его в спектроскопии.

Обсерватория будет работать на гораздо большем удалении от Земли, чем телескоп «Хаббл» — на геосинхронной орбите с высотой около 35 тысяч километров[33].

Стоимость

Стоимость создания и запуска комплекса «Спектр-УФ» по состоянию на 2006 год — около 100 млн евро[34].

В создание телескопа несколько миллионов евро вложила Испания. Суммарно к концу проекта её вклад будет оцениваться в 15 миллионов евро.

Согласно проекту Федеральной космической программы, с 2016 по 2025 годы на создание космического комплекса «Спектр-УФ» требовалось 10 млрд 110 млн рублей. Из них в 2019 году программой было предусмотрено выделение 1 млрд 500 млн рублей, в 2020 году — 1 млрд 100 млн рублей, в 2021 году — 1 млрд 400 млн рублей. В последующем предполагалось сокращение финансирования[5]. С 2016 по 2021 годы на создание «Спектра-УФ» выделено 2,9 млрд рублей.

8 июля 2021 года между Роскосмосом и НПО им. Лавочкина был подписан контракт на сумму 3,68 млрд рублей на разработку рабочей конструкторской документации на составные части космического комплекса, включая составные части космического аппарата (КА), изготовление и испытания составных частей КА и комплекса научной аппаратуры в 2021—2025 годах. Работы планируется выполнить к концу 2025 года[35].

См. также

Примечания

  1. Роскосмос: обсерваторию "Спектр-УФ" планируют запустить с Восточного в 2024 году (28 июня 2018).
  2. Шустов Б. М. Ультрафиолетовая вселенная. «Трибуна учёного». Московский планетарий (8 октября 2014). Дата обращения: 8 февраля 2015.
  3. Всемирная космическая обсерватория — Ультрафиолет (ВКО-УФ, WSO-UV) (недоступная ссылка). Дата обращения: 8 февраля 2015. Архивировано 1 января 2014 года.
  4. В РАН объяснили, почему важно не откладывать запуск "Спектра-УФ". РИА Новости (03.10.2021).
  5. Роскосмос в разы сокращает финансирование «русского Хаббла». РИА Новости (13 февраля 2019).
  6. Крупный контракт на МАКС 2013. ФИАН-информ (август 2013). Дата обращения: 8 февраля 2015.
  7. Закончены тепловые и виброиспытания телескопа обсерватории «Спектр-УФ». РИА Новости (24 августа 2013).
  8. Михаил Евгеньевич Сачков. Спектр-УФ: состояние дел по проекту. Доклад на заседании Совета РАН по космосу. Совет по космосу РАН (3 декабря 2014). Дата обращения: 8 февраля 2015.
  9. Иван Чеберко. США запретили поставлять в Россию приборы для научного спутника. Известия (27 ноября 2014). Дата обращения: 8 февраля 2015.
  10. Испания не успевает изготовить аппаратуру для обсерватории «Спектр-УФ», заявили в РАН. ТАСС (24 декабря 2014). Дата обращения: 9 февраля 2015.
  11. Совет главных конструкторов КК «Спектр-УФ». НПО им. Лавочкина (26 июня 2015). Дата обращения: 5 января 2016.
  12. Юрий Машков. Разработчик: запуск российской обсерватории "Спектр-УФ" сдвинулся на 2021 год. ИТАР-ТАСС (26 июня 2015). Дата обращения: 5 января 2016.
  13. Запуск "русского Хаббла" могут в очередной раз отложить (23 мая 2017).
  14. Астроном Дмитрий Бисикало: существование внеземных цивилизаций возможно. ТАСС (11 октября 2018).
  15. Испания выделила средства на космический проект "Спектр-УФ". РИА Новости (17 января 2019).
  16. Научный руководитель Института астрономии: зачем нужна Луна. Интерфакс (22 января 2019).
  17. Срок запуска космического телескопа "Спектр-УФ" зависит от финансирования проекта. ТАСС (11 февраля 2019).
  18. Япония приступила к разработке прибора для "Спектра-УФ" до подписания соглашения с Россией. ТАСС (12 февраля 2019).
  19. Япония подписала с Россией письмо о намерении создать прибор для космической обсерватории. ТАСС (19 марта 2019).
  20. Финальная подготовка "Спектра-УФ" к запуску пройдет во второй половине лета 2025 года. ТАСС (24 мая 2019).
  21. Российские учёные отобрали семь экспериментов для реализации на обсерватории "Спектр-УФ". ТАСС (6 июля 2019).
  22. На обсерватории "Спектр-УФ" сможет разместиться лишь один из предлагаемых Японией приборов. ТАСС (13 августа 2019).
  23. Испания передаст РФ предназначенные для обсерватории "Спектр-УФ" приборы в 2020 году. РИА Новости (1 ноября 2019).
  24. РАН: Британия обошла санкции на экспорт космической электроники в Россию. РИА Новости (13.09.2020).
  25. Когда запустят «русский Хаббл». Газета.ру (16.07.2021).
  26. Россия и Япония подписали соглашение о создании аналога "Хаббла". РИА Новости (04.03.2021).
  27. Ученый рассказал о новом контракте на создание обсерватории "Спектр-УФ". РИА Новости (15.10.2021).
  28. Запуск космической обсерватории "Спектр-УФ" перенесли на 2025 год. ТАСС (21 мая 2019).
  29. Россия запустит следующую космическую обсерваторию после 2025 года. РИА Новости (25.08.2021).
  30. Всемирная космическая обсерватория — Ультрафиолет (ВКО-УФ, WSO-UV): Орбита и запуск (недоступная ссылка). Дата обращения: 8 февраля 2015. Архивировано 4 марта 2016 года.
  31. Всемирная космическая обсерватория — Ультрафиолет (ВКО-УФ, WSO-UV). Научные приборы (недоступная ссылка). Дата обращения: 8 февраля 2015. Архивировано 9 октября 2014 года.
  32. Сибирские учёные создали для телескопа "Спектр-УФ" защиту от метеоров. РИА Новости (3 октября 2016).
  33. ВКО-УФ: Орбита и запуск (недоступная ссылка). Архивировано 1 сентября 2012 года.: «Орбита — геосинхронная с наклонением 51,6 градусов»
  34. Учёные ждут «Спектр-УФ», Новости Космонавтики (30 сентября 2006).
  35. Россия выделила 3,7 миллиарда рублей на аналог телескопа "Хаббл". РИА Новости (16.07.2021).

Ссылки

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.