Вояджер-2

«Вóяджер-2» (англ. Voyager 2) — действующий космический зонд, запущенный НАСА 20 августа 1977 года в рамках программы «Вояджер» для исследований дальних планет Солнечной системы. Первый и единственный земной космический аппарат, достигший Урана (в январе 1986 года) и Нептуна (в августе 1989 года). «Вояджер-2» более 25 лет удерживал рекорд по дальности достигнутого и изученного объекта Солнечной системы, пока его не превзошёл космический зонд «Новые горизонты», который в июле 2015 года достиг Плутона.

Вояджер-2
Voyager 2

«Вояджер»
Заказчик НАСА
Производитель США
Оператор НАСА
Задачи исследование дальних планет Солнечной системы
Пролёт Юпитер, Сатурн, Уран, Нептун
Стартовая площадка мыс Канаверал
Ракета-носитель Titan IIIE / «Центавр»
Запуск 20 августа 1977 14:29:00 UTC
Длительность полёта в полёте 44 года 6 месяцев 16 дней
COSPAR ID 1977-076A
SCN 10271
Технические характеристики
Масса 721,9 кг
Мощность 420 Вт
voyager.jpl.nasa.gov
 Медиафайлы на Викискладе

Актуальное расстояние от Земли и от Солнца до «Вояджера-2», а также его гелиоцентрическая скорость отображаются в режиме реального времени на сайте НАСА[1].

История

Снимок поверхности Европы
Фотография Энцелада

«Вояджер-2» стартовал 20 августа 1977 года, то есть на 16 дней раньше «Вояджера-1»[2].

Миссия «Вояджера-2» первоначально включала изучение только Юпитера и Сатурна, а также их спутников. Траектория полёта также предусматривала возможность пролёта мимо Урана и Нептуна, которая была успешно реализована.

Аппарат идентичен «Вояджеру-1». За счёт гравитационных манёвров у Юпитера, Сатурна и Урана «Вояджер-2» смог на 18 лет сократить срок полёта к Нептуну (по сравнению с полётом от Земли по гомановской траектории).

  • 9 июля 1979 года — максимальное сближение с Юпитером (71,4 тыс. км).
«Вояджер-2» близко подошёл к Европе и Ганимеду, галилеевым спутникам, не исследованным ранее «Вояджером-1». Переданные снимки позволили выдвинуть гипотезу о существовании жидкого океана под поверхностью Европы. Обследование самого крупного спутника в Солнечной системе — Ганимеда — показало, что он покрыт корой «грязного» льда, а его поверхность значительно старше поверхности Европы. После обследования спутников аппарат пролетел мимо Юпитера.
  • 25 августа 1981 года — максимальное сближение с Сатурном (101 тыс. км).
Траектория зонда прошла около спутников Сатурна Тефии и Энцелада, аппарат передал подробные фотографии поверхности спутников.
  • 24 января 1986 года — максимальное сближение с Ураном (81,5 тыс. км).
Аппарат передал на Землю тысячи снимков Урана, его спутников и колец. Благодаря этим фотографиям учёные обнаружили два новых кольца и исследовали девять уже известных. Помимо этого, были обнаружены 11 новых спутников Урана.
Снимки одной из лун — Миранды — удивили исследователей. Предполагается, что маленькие спутники быстро охлаждаются после своего образования, и представляют собой однообразную пустыню, испещрённую кратерами. Однако выяснилось, что на поверхности Миранды пролегают долины и горные хребты, среди которых были заметны скалистые утёсы. Это говорит о том, что история луны богата тектоническими и термальными явлениями.
«Вояджер-2» показал, что на обоих полюсах Урана температура оказалась одинаковой, хотя только один освещался Солнцем. Исследователи сделали вывод о наличии механизма передачи тепла из одной части планеты к другой. В среднем температура Урана составляет 59 К, или −214 °C[2].
  • 24 августа 1989 года — аппарат пролетел в 48 тыс. км от поверхности Нептуна.
Были получены уникальные снимки Нептуна и его крупного спутника Тритона. На Тритоне были обнаружены действующие гейзеры, что было очень неожиданным для удалённого от Солнца и холодного спутника. Были открыты 4 новых спутника.
Фотография Тритона
Фото облаков Нептуна
  • 24 января 2011 года в НАСА отмечался 25-летний юбилей встречи «Вояджера-2» с Ураном. На этот момент аппарат находился примерно в 14 млрд км от Солнца, а «Вояджер-1», направленный для исследования Юпитера и Сатурна, улетел от Солнца более чем на 17 млрд км.
  • 4 ноября 2011 года была послана команда переключения на запасной набор двигателей системы ориентации[4]. Через 10 дней получено подтверждение о переключении. Это позволит аппарату проработать ещё не менее 10 лет.
  • 10 декабря 2018 года НАСА подтвердило, что «Вояджер-2» преодолел гелиопаузу и вошёл в межзвёздное пространство[5]. Зонд остаётся в пределах Солнечной системы, гравитационная граница которой находится за внешним краем Облака Оорта, совокупности небольших объектов под гравитационным влиянием Солнца[6].
  • 2 ноября 2019 года НАСА сообщило о готовности к публикации данных, полученных космическим аппаратом в межзвёздной среде. 4 ноября 2019 в журнале Nature Astronomy вышли пять статей, каждая из которых описывает результаты с одного из пяти приборов «Вояджера-2» — детектора магнитного поля[7], двух регистраторов частиц в различных энергетических диапазонах[8][9] и двух приборов для изучения плазмы[10][11] — газа, состоящего из заряженных частиц[12][13].
  • 7 ноября 2021 года «Вояджер-2» стал вторым среди самых удалённых от Земли космических аппаратов, «обогнав»[Комм. 1] на расстоянии около 128.9 астрономических единиц космический зонд «Пионер-10».

Устройство аппарата

Масса аппарата при старте составляла 798 кг, масса полезной нагрузки — 86 кг. Длина — 2,5 м. Корпус аппарата — десятигранная призма с центральным проёмом. На корпус посажен отражатель направленной антенны диаметром 3,66 метра[14]. Электропитание обеспечивают три вынесенных на штанге радиоизотопных термоэлектрических генератора, использующих плутоний-238 в виде окиси (в силу удалённости от Солнца солнечные батареи были бы бесполезны). На момент старта общее тепловыделение генераторов составляло около 7 киловатт, их кремний-германиевые термопары обеспечивали 470 ватт электрической мощности[15]. По мере распада плутония-238 (его период полураспада составляет 87,7 года) и деградации термопар мощность термоэлектрических генераторов падает (при пролёте мимо Урана — 400 ватт). На 08.03.2022 остаток плутония-238 равен 70.3% от начального, к 2025 году тепловыделение упадёт до 68.8% от начального. Кроме штанги электрогенераторов, к корпусу прикреплены ещё две: штанга с научными приборами и отдельная штанга магнитометра[14].

На «Вояджере» установлены два компьютера, которые можно перепрограммировать, что позволяло менять научную программу и обходить возникающие неисправности. Объём оперативной памяти — два блока по 4096 восемнадцатиразрядных слов. Ёмкость запоминающего устройства — 67 мегабайт (до 100 изображений от телевизионных камер). В системе трёхосной ориентации используются два датчика Солнца, датчик звезды Канопус, инерциальный измерительный блок, а также 16 реактивных микродвигателей. В системе коррекции траектории используются 4 таких микродвигателя. Они рассчитаны на 8 коррекций при общем приращении скорости 200 м/сек.

Антенны две: ненаправленная и направленная. Обе антенны работают на частоте 2113 МГц на приём и 2295 МГц на передачу (S-диапазон), а направленная антенна — ещё и 8415 МГц на передачу (X-диапазон)[14]. Мощность излучения — 28 Вт в S-диапазоне, 23 Вт в X-диапазоне. Радиосистема «Вояджера» передавала поток информации со скоростью 115,2 кбит/с от Юпитера и 45 кбит/с — от Сатурна. Первоначально расчётная скорость передачи с Урана составляла лишь 4,6 кбит/с, однако её удалось повысить до 30 кбит/с, так как к тому времени была повышена чувствительность радиотелескопов на Земле. На определённом этапе миссии была реализована схема сжатия изображений, для чего был перепрограммирован бортовой компьютер. Также был задействован имевшийся на «Вояджере» экспериментальный кодировщик данных: схема коррекции ошибок в принимаемых и передаваемых данных была изменена с двоичного кода Голея на код Рида — Соломона, что сократило количество ошибок в 200 раз[16].

На борту аппарата закреплена золотая пластина, на которой для потенциальных инопланетян указаны координаты Солнечной системы и записан ряд земных звуков и изображений.

В комплект научной аппаратуры входят следующие приборы:

  • Телевизионная камера с широкоугольным объективом и телевизионная камера с телеобъективом, каждый кадр которой содержит 125 кБ информации.
  • Инфракрасный спектрометр, предназначенный для исследования энергетического баланса планет, состава атмосфер планет и их спутников, распределения температурных полей.
  • Ультрафиолетовый спектрометр, предназначенный для исследования температуры и состава верхних слоёв атмосферы, а также некоторых параметров межпланетной и межзвёздной среды.
  • Фотополяриметр, предназначенный для исследования распределения метана, молекулярного водорода и аммиака над облачным покровом, а также для получения информации об аэрозолях в атмосферах планет и о поверхности их спутников.
  • Два детектора межпланетной плазмы, предназначенные для регистрации как горячей дозвуковой плазмы в магнитосфере планет, так и холодной сверхзвуковой плазмы в солнечном ветре. Установлены также детекторы волн в плазме.
  • Детекторы заряженных частиц низкой энергии, предназначенные для исследования энергетического спектра и изотопного состава частиц в магнитосферах планет, а также в межпланетном пространстве.
  • Детекторы космических лучей (частиц высоких энергий).
  • Магнитометры для измерения магнитных полей.
  • Приёмник для регистрации радиоизлучения планет, Солнца и звёзд. Приёмник использует две взаимно перпендикулярные антенны длиной по 10 м.

Большинство приборов вынесено на специальной штанге, часть из них установлена на поворотную платформу[14]. Корпус аппарата и приборы оборудованы разнообразной теплоизоляцией, тепловыми экранами, пластиковыми блендами.

Работоспособность и предполагаемая дальнейшая судьба аппарата

Хотя запланированный срок работы обоих «Вояджеров» давно истёк, часть их научных приборов продолжает работать. Аппаратура получает энергию от трёх радиоизотопных термоэлектрических генераторов, работающих на плутонии-238. На старте суммарная электрическая мощность генераторов составляла 470 ватт. Постепенно она снижается из-за распада плутония и деградации термопар. К 2012 году электрическая мощность упала примерно на 45 %. Тем не менее, ожидается, что минимально необходимое для исследований электроснабжение будет поддерживаться приблизительно до 2025 года[17].

Примерно через 300 лет зонд достигнет внутреннего края Облака Оорта и ещё, вероятно, 30000 лет понадобится, чтобы покинуть его[6].

Через 40000 лет «Вояджер-2» пройдёт на расстоянии 1,7 светового года от звезды Росс 248[18].

Примерно через 296 тысяч лет «Вояджер-2» разойдётся с Сириусом на расстоянии 4,3 светового года[19].

См. также

Комментарии

  1. «Вояджер-1» и «Пионер-10» удаляются от Солнца в различных направлениях, поэтому речь идёт только о сравнении расстояний.

Примечания

  1. Mission Status (англ.). Voyager. NASA Jet Propulsion Laboratory (JPL). Дата обращения: 14 ноября 2019.
  2. Jia-Rui Cook. Voyager Celebrates 25 Years Since Uranus Visit. — NASA, 2011.
  3. Voyager 2 покидает Солнечную систему (недоступная ссылка). Дата обращения: 19 января 2020. Архивировано 6 ноября 2008 года.
  4. Космос-журнал: «Вояджер-2» меняет двигатели
  5. Аппарат «Вояджер-2» вышел в межзвездное пространство
  6. NASA's Voyager 2 Probe Enters Interstellar Space (англ.). Voyager. NASA Jet Propulsion Laboratory (JPL) (10 декабря 2018). Дата обращения: 11 декабря 2018.
  7. Burlaga L. F., Ness N. F., Berdichevsky D. B., Park J., Jian L. K., Szabo A., Stone E. C., Richardson J. D. Magnetic field and particle measurements made by Voyager 2 at and near the heliopause (англ.) // Nature Astronomy. — 2019. Vol. 3, no. 11. P. 1007—1012. ISSN 2397-3366. doi:10.1038/s41550-019-0920-y.
  8. Stone E. C., Cummings A. C., Heikkila B. C., Lal N. Cosmic ray measurements from Voyager 2 as it crossed into interstellar space (англ.) // Nature Astronomy. — 2019. Vol. 3, no. 11. P. 1013—1018. ISSN 2397-3366. doi:10.1038/s41550-019-0928-3.
  9. Krimigis S. M. et al. Energetic charged particle measurements from Voyager 2 at the heliopause and beyond (англ.) // Nature Astronomy. — 2019. Vol. 3, no. 11. P. 997—1006. ISSN 2397-3366. doi:10.1038/s41550-019-0927-4.
  10. Gurnett D. A., Kurth W. S. Plasma densities near and beyond the heliopause from the Voyager 1 and 2 plasma wave instruments (англ.) // Nature Astronomy. — 2019. Vol. 3, no. 11. P. 1024—1028. ISSN 2397-3366. doi:10.1038/s41550-019-0918-5.
  11. Richardson J. D., Belcher J. W., Garcia-Galindo P., Burlaga L. F. Voyager 2 plasma observations of the heliopause and interstellar medium (англ.) // Nature Astronomy. — 2019. Vol. 3, no. 11. P. 1019—1023. ISSN 2397-3366. doi:10.1038/s41550-019-0929-2.
  12. Voyager 2 Illuminates Boundary of Interstellar Space
  13. «Вояджер-2» прислал на Землю данные из межзвездного пространства
  14. Космонавтика, энциклопедия. М., 1985.
  15. Voyager 2 Host Information. (недоступная ссылка). Архивировано 11 ноября 2014 года. JPL
  16. Ludwig, R., Taylor J. Voyager Telecommunications (англ.). NASA.
  17. Инженеры продлили жизнь станции Voyager до 2025 года (недоступная ссылка). Membrana.ru (19 января 2012). Дата обращения: 22 января 2012. Архивировано 8 февраля 2012 года.
  18. Борисов, Андрей. Путешествие в бездну. Lenta.ru (11 января 2017). Дата обращения: 11 декабря 2018.
  19. Interstellar Mission (англ.). Voyager. NASA Jet Propulsion Laboratory (JPL). Дата обращения: 11 декабря 2018.

Литература

Ссылки

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.