Волны в плазме

Во́лны в пла́зме — электромагнитные волны, распространяющиеся в плазме и самосогласованные с коллективным движением заряженных частиц плазмы. В силу того, что доминирующее значение в динамике частиц плазмы играет электромагнитное взаимодействие между ними, электромагнитные свойства плазмы сильно зависят от наличия внешних полей, а также от параметров распространяющихся в ней волн.

Волны в плазме являются основным предметом изучения электродинамики плазмы. Последовательный и наиболее полный анализ основывается на решении совместной системы уравнений Максвелла для полей и уравнения Власова для каждой из компонент плазмы. Однако в некоторых случаях возможно применение гидродинамического описания плазмы. Кроме того, в ряде случаев возможно введение понятия диэлектрической проницаемости плазмы, которая при наличии постоянного внешнего магнитного поля имеет вид тензора.

Важной особенностью плазмы как среды распространения электромагнитных волн является наличие у неё сильной дисперсии. Принято выделять временную и пространственную дисперсию плазмы. Временная дисперсия связана с запаздыванием отклика плазмы на приложенные внешние поля, связанное с наличием собственных плазменных колебаний. При наличии внешнего магнитного поля в плазме появляются и другие характерные собственные времена: периоды вращения частиц плазмы в магнитном поле. Пространственная дисперсия связана с наличием теплового движения плазмы, приводящего к тому, что на расстояниях меньших так называемого дебаевского радиуса из-за действующих между частицами полей происходит эффективная корреляция их движения. В магнитоактивной плазме появляется также характерные масштабы гирорадиусов вращения частиц во внешнем магнитном поле.

Волны в изотропной плазме

В изотропной плазме возможно существование трёх видов волн: поперечных электромагнитных волн, которые являются аналогом электромагнитных волн в вакууме; продольных ленгмюровских волн, являющихся особым видом волн, характерных только для плазменных сред; а также ионно-звуковых волн, являющихся аналогами звуковых волн в средах, однако отличающихся от них тем, что доминирующей возвращающей силой в плазме является электростатическая сила[1].

Поперечные волны

Для поперечных волн в бесстолкновительной плазме, температурой электронов в которой пренебрегается, диэлектрическая проницаемость имеет вид[2]:

Поскольку масса ионов значительно выше, чем масса электронов, вторым слагаемым в скобках обычно можно пренебречь. Таким образом, эти волны являются аналогом электромагнитных волн в вакууме, однако отличаются от них наличием дисперсии. Дисперсионное соотношение для этих волн имеет вид[3]:

Откуда несложно определить фазовую и групповую скорости волн:

Таким образом, всегда выполняется соотношение . Особенностью поперечных волн в изотропной плазме является также наличие диапазона частот , в котором диэлектрическая проницаемость отрицательна, а коэффициент преломления чисто мнимый. Волны с такой частотой не могут распространяться в плазме. При падении на слой плазмы электромагнитной волны, частота которой ниже электронной плазменной частоты, в плазме образуется скин-слой, а волна полностью отражается.

Учёт кинетических эффектов, в том числе температуры электронов (в случае нерелятивистских температур), приводит только к небольшой коррекции дисперсионного соотношения для поперечных волн, но не привносит новых свойств или эффектов. Это объясняется тем, что скорость поперечных волн значительно выше, чем скорость теплового движения электронов[4].

Продольные волны

Продольные или ленгмюровские волны являются особым видом волн, характерным только для плазмы и плазмоподобных сред. Эти волны называются продольными, поскольку в них вектор электрического поля сонаправлен с волновым вектором. Характерной особенностью является также то, что наравне с колебаниями поля в ленгмюровских волнах колеблется электронная плотность. Ленгмюровские волны были впервые изучены в 1929 году И. Ленгмюром и Л. Тонксом.

Важной особенностью ленгмюровских волн является наличие у них так называемого затухания Ландау — бесстолкновительного затухания, связанного с передачей энергии волн частицам плазмы. Коэффициент затухания зависит от длины волны и в длинноволновом приближении, так что выполняется (где  — тепловая скорость электронов), равен[5]:

где  — дебаевский радиус электронов.

В том же приближении дисперсионное соотношение для продольных волн имеет вид[5]:

Таким образом, коротковолновые возмущения, для которых , быстро затухают, поскольку для них величина частоты приближается к величине коэффициента затухания, то есть волна, фактически, перестаёт быть распространяющейся и затухает на одном периоде. При этом в той области, где волна затухает слабо, её частота практически не изменяется и приблизительно равна электронной плазменной частоте. Это позволяет говорить о том, что данная волна является просто плазменными колебаниями, распространяющимися в пространстве только за счёт наличия тепловой скорости электронов. В приближении нулевой температуры электронов скорость ленгмюровских волн точно равна нулю, а дисперсионное соотношение для них имеет вид[6]:

Поскольку ленгмюровские волны связаны с колебаниями электронной плотности, которые происходят на высоких частотах, движение ионов слабо сказывается на характеристиках продольных волн. Фактически, движение ионов даёт вклад только в малую поправку к плазменной частоте[7]:

Ионно-звуковые волны

Рассмотренные выше поперечные и продольные электронные волны относятся к высокочастотным, и движение ионов не оказывает заметного влияния на их характеристики. В низкочастотной области, однако, возможно существование плазменных волн, в которых движение ионов имеет определяющее значение[7]. Эти волны, называемые ионно-звуковыми, носят продольный характер и во многом аналогичны звуковым волнам в неплазменных средах. Роль возвращающих сил в таких волнах, однако, играют электростатические силы разделения зарядов, а не силы давления.

Существование ионно-звуковых волн возможно только в сильно неравновесной плазме, в которой температура электронов значительно превышает температуру ионов: [7]. Для фазовой скорости ионно-звуковых волн при этом выполняется следующее неравенство[7]:

,

где и  — скорости теплового движения ионов и электронов соответственно.

В этих предположениях уравнение ионно-звуковых волн может быть получено на основе гидродинамического описания плазмы. В линейном приближении из них может быть получено дисперсионное соотношение следующего вида[8]:

,

где  — скорость ионного звука.

Аналогично ленгмюровским волнам, ионно-звуковые волны испытывают бесстолкновительное затухание, связанное с взаимодействием с резонансными частицами — электронами и ионами. Это взаимодействие резко усиливается, если фазовая скорость ионного звука приближается к тепловой скорости ионов. По этой причине ионно-звуковые волны не могут распространяться в равновесной плазме, для которой , и следовательно, [9].

Интересны предельные случаи ионно-звуковых волн. В длинноволновом пределе () дисперсионное соотношение принимает вид[9]

,

то есть представляет собой линейную зависимость, характерную и для обычных звуковых волн.

В коротковолновом пределе () дисперсионное соотношение принимает вид[9]

,

то есть волна вырождается в продольные колебания на ионной плазменной частоте.

Волны в магнитоактивной плазме

Магнитоактивной называется плазма, помещённая во внешнее магнитное поле. Наличие магнитного поля снимает вырождение решений дисперсионного уравнения по поперечной поляризации электромагнитных волн. В результате, число собственных колебательных мод увеличивается. Происходит также смешивание продольных и поперечных мод, так что не всегда удаётся провести однозначное деление на продольные и поперечные волны[10].

Если пренебречь температурой (то есть рассмотреть случай так называемой холодной плазмы), то в однородной магнитоактивной плазме существует пять видов волн: низкочастотные альфвеновская и быстрая магнитозвуковая, а также высокочастотные обыкновенная, медленная необыкновенная и быстрая необыкновенная волны. В направлении вдоль магнитного поля медленная необыкновенная волна вырождается в чисто продольную волну, аналогичную ленгмюровской волне. В направлении, перпендикулярном магнитному полю, альфвеновская волна распространяться не может (формально, её частота равна нулю), и остаётся только четыре собственные моды[10].

При учёте конечной температуры количество собственных волн увеличивается. В низкочастотной области появляется медленная магнитозвуковая волна, аналогичная ионному звуку. В высокочастотной области появляются так называемые циклотронные волны или моды Бернштейна, не имеющие аналогов в газодинамике и связанных с конечностью ларморовского радиуса[10].

Существование нескольких типов волн с одинаковой частотой но различными поляризациями приводит к появлению эффекта двулучепреломления как для низкочастотных, так и для высокочастотных волн[10].

В неоднородной магнитоактивной плазме появляются новые типы низкочастотных волны, называемые дрейфовыми[10].

Наличие магнитного поля приводит к появлению выделенного направления в пространстве (вдоль направления вектора индукции магнитного поля). По этой причине в общем случае диэлектрическая проницаемость магнитоактивной плазмы является тензорной величиной, а закон дисперсии может быть получен в явном виде лишь в отдельных частных случаях[10].

Низкочастотные (магнитогидродинамические) волны

Альфвеновские волны

Магнитозвуковые волны

Высокочастотные волны

Электронно-звуковые волны

Циклотронные волны

Нелинейные волны в плазме

Примечания

Литература

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.