AU Микроскопа

AU Микроскопа (лат. AU Microscopii) — звезда в созвездии Микроскопа. Находится на расстоянии около 32 световых лет от Солнца. У звезды обнаружен осколочный диск и две экзопланеты.

AU Микроскопа
Звезда

AU Микроскопа. Фотография проекта 2MASS
Наблюдательные данные
(Эпоха J2000.0)
Прямое восхождение 20ч 45м 9,53с
Склонение −31° 20 27,24
Расстояние 32,3 ± 0,3 св. года
Видимая звёздная величина (V) 8,61
Созвездие Микроскоп
Астрометрия
Лучевая скорость (Rv) 1,2 км/c
Собственное движение
  прямое восхождение 280,37 mas в год
  склонение −360,09 mas в год
Параллакс (π) 100,59 ± 1,35 mas
Абсолютная звёздная величина (V) 8,61
Спектральные характеристики
Спектральный класс M1Ve
Показатель цвета
  B−V 1,45
  U−B 1,01
Переменность вспыхивающая звезда
Физические характеристики
Масса 59% [1] M
Радиус 66% R
Возраст 12 млн [1] лет
Температура 3730 K
Светимость 2,5—2,9% L
Металличность −0,12[2]
Вращение 9,3 км/с и 9,68 км/с[3]
Часть от Движущаяся группа звёзд Беты Живописца[4]
Коды в каталогах
AU Microscopii, AU Mic, GJ 803, CD-31 17815, HD 197481, LTT 8214, GCTP 4939.00, SAO 212402, Vys 824, LDS 720. HIP 102409
Информация в базах данных
SIMBAD данные
Информация в Викиданных ?
 Медиафайлы на Викискладе

Звезда

AU Микроскопа — небольшая тусклая звезда. Она относится к спектральному классу M1 главной последовательности (красный карлик). Её масса составляет всего лишь 50% массы Солнца, а диаметр — около 66—67% от диаметра Солнца[5]. Светимость звезды равна приблизительно 2,5—2,9% солнечной светимости. Однако AU Микроскопа — молодая активная звезда, возраст которой оценивается в 12 млн лет. Как и у всех подобных звёзд, в ней происходят мощные термоядерные процессы, из-за чего нередки вспышки, превосходящие солнечные по интенсивности в 2—4 раза. Именно поэтому AU Микроскопа относят также к классу вспыхивающих переменных звёзд.

Звезду наблюдали во всех частях электромагнитного спектра, и выяснилось, что регулярные вспышки, происходящие на ней, видимы во всех частотах.[6] Впервые активность звезды была открыта в 1973 году[7].

Осколочный диск

Осколочный диск вокруг AU Микроскопа. Фотография телескопа «Хаббл».

В марте 2004 года известный первооткрыватель планетарных дисков Пол Калас объявил об обнаружении осколочного диска в системе AU Микроскопа[8] Диск повёрнут к нам ребром;[9] размером он около 200 а.е. в радиусе. Как показали исследования, соотношение газа и пыли в нём равно 6:1, что чрезвычайно мало: обычно соотношение равняется 100:1.[10]. Исходя из этого, можно сделать вывод, что сам диск намного старше родительской звезды. Наблюдения с помощью космического телескопа «Спитцер» позволили вычислить общую массу видимой пыли: она приблизительно равна 6 массам Луны[11]. Распределение спектральных линий в субмиллиметровом диапазоне указало на то, что в диске находится внутреннее кольцо, размером до 17 а.е. в диаметре[12]. Осколочный диск сам по себе асимметричен, и на расстоянии 40 а.е. от родительской звезды в нём наблюдается неясная структура[13]. Возможно, это является следствием гравитационного влияния массивных объектов либо действием недавнего формирования планет.

Асимметричная структура и наличие пустого пространства во внутренней части диска позволили предположить наличие планет в системе AU Микроскопа. Однако до сих пор ни одного массивного объекта там не было найдено.

В 2007 году с помощью космического телескопа «Хаббл» удалось сделать снимок осколочного диска. Основываясь на наблюдениях «Хаббла», астрономы сделали компьютерную модель диска, и пришли к выводу, что в нём должны содержаться крупные образования, называемые планетезималями, размером больше, чем Плутон[1].

Пять необычных образований в форме дуг в газопылевом диске AU Микроскопа, обнаруженные в 2014 году инструментом SPHERE на Очень большом телескопе, перемещаются со скоростью до 40 тыс. км в час в направлении от звезды[14]. Если диск продолжит рассеиваться в таком быстром темпе, то он исчезнет примерно через 1,5 млн лет[15].

Планетная система

В 2020 году астрономы из Университета Джорджа Мейсона сообщили об открытии нептуноподобной экзопланеты AU Микроскопа b. Планету обнаружили с помощью данных космического телескопа TESS и подтвердили с помощью данных космического инфракрасного телескопа Спитцер. Радиус AU Микроскопа b составляет примерно 0,375 радиуса Юпитера (на 8% больше радиуса Нептуна). Планета находится на расстоянии 0,066 а.е. от материнской звезды. Период обращения — 8,46321±0,00004 дня. Методом лучевых скоростей верхний предел массы экзопланеты оценивается в 0,18 массы Юпитера, то есть она в 58 раз массивнее Земли. Возраст планеты — 12 млн лет[16]. Звезда AU Микроскопа проявляет сильную активность и имеет большие пятна. При помощи инструмента SPIRou, работающего в ближнем инфракрасном диапазоне и установленного на наземного 3,6-метровом телескопе CFHT на вершине вулкана Мауна-Кеа (Гавайи), методом радиальных скоростей удалось с большой точностью определить массу планеты, равную 17,1 массы Земли. При такой массе и радиусе планеты 0,4 радиуса Юпитера средняя плотность планеты составит 1,7 г/см³.

В декабре 2020 года транзитным методом космическая обсерватория TESS обнаружила планету AU Микроскопа c радиусом 0,320 ± 0,014 радиуса Юпитера и массой не менее 0,087 массы Юпитера[17].

Ближайшее окружение звезды

AU Микроскопа гравитационно связана с двойной звездой AT Микроскопа, которая находится на расстоянии 1,2 светового года от неё. Все они входят в движущуюся группу звёзд β Живописца.

Следующие звёздные системы находятся на расстоянии в пределах 10 световых лет от AU Микроскопа:

Звезда Спектральный класс Расстояние, св. лет
AT Микроскопа AB M4,5 Vpe / M4,5 Ve 1,2
CD-27 14659 K0-3 V / ? 5,5
AC+20 76187 DA/VII 6,3
L 499-56 M3,5 V 9,2

Примечания

  1. Alice C. Quillen, Alessandro Morbidelli, Alex Moore. Planetary embryos and planetesimals residing in thin debris disks (англ.). Arxiv.org (9 мая 2007). Дата обращения: 5 мая 2014.
  2. Gaidos E., Mann A. W., Lépine S., Buccino A., James D., Ansdell M., Petrucci R., Hilton E. J. Trumpeting M dwarfs with CONCH-SHELL: a catalogue of nearby cool host-stars for habitable exoplanets and life (англ.) // Mon. Not. R. Astron. Soc. / D. FlowerOUP, 2014. — Vol. 443, Iss. 3. — P. 2561—2578. — ISSN 0035-8711; 1365-2966doi:10.1093/MNRAS/STU1313arXiv:1406.7353
  3. Houdebine E. R. Observation and modelling of main-sequence star chromospheres - XIV. Rotation of dM1 stars★ (англ.) // Mon. Not. R. Astron. Soc. / D. FlowerOUP, 2010. — Vol. 407, Iss. 3. — P. 1657–1673. — ISSN 0035-8711; 1365-2966doi:10.1111/J.1365-2966.2010.16827.X
  4. SIMBAD Astronomical Database
  5. Johnson, H. M. & Wright, C. D. Predicted infrared brightness of stars within 25 parsecs of the sun (англ.). Astrophysical Journal Supplement Series (ISSN 0067-0049), vol. 53, Nov. 1983, p. 643-711. (1983). Дата обращения: 6 июля 2009. Архивировано 16 февраля 2012 года.
  6. Maran, S. P.; Robinson, R. D.; Shore, S. N.; Brosius, J. W.; Carpenter, K. G.; Woodgate, B. E.; Linsky, J. L.; Brown, A.; Byrne, P. B.; Kundu, M. R.; White, S.; Brandt, J. C.; Shine, R. A.; Walter, F. M. Observing stellar coronae with the Goddard High Resolution Spectrograph. 1: The dMe star AU microscopoii (англ.). Astrophysical Journal, Part 1 (ISSN 0004-637X), vol. 421, no. 2, p. 800-808 (2 января 1994). Дата обращения: 6 июля 2009. Архивировано 9 июня 2012 года.
  7. Kunkel, William E. Activity in Flare Stars in the Solar Neighborhood (англ.). Astrophysical Journal Supplement, vol. 25, p.1 (1973) (1 января 1973). Дата обращения: 6 июля 2009. Архивировано 9 июня 2012 года.
  8. Kalas et al. Discovery of a Large Dust Disk Around the Nearby Star AU Microscopii (англ.). Science 26 March 2004: 1990-1992 (2004). Дата обращения: 6 июля 2009. Архивировано 9 июня 2012 года.
  9. Kalas, Paul; Graham, James R.; Clampin, Mark. A planetary system as the origin of structure in Fomalhaut's dust belt (англ.). Nature, Volume 435, Issue 7045, pp. 1067-1070 (2005). (6 января 2005). Дата обращения: 6 июля 2009. Архивировано 9 июня 2012 года.
  10. Roberge, Aki; Weinberger, Alycia J.; Redfield, Seth; Feldman, Paul D. Rapid Dissipation of Primordial Gas from the AU Microscopii Debris Disk (англ.). The Astrophysical Journal, Volume 626, Issue 2, pp. L105-L108. (6 января 2005). Дата обращения: 6 июля 2009. Архивировано 9 июня 2012 года.
  11. Chen, C. H.; Patten, B. M.; Werner, M. W.; Dowell, C. D.; Stapelfeldt, K. R.; Song, I.; Stauffer, J. R.; Blaylock, M.; Gordon, K. D.; Krause, V. A Spitzer Study of Dusty Disks around Nearby, Young Stars (англ.). The Astrophysical Journal, Volume 634, Issue 2, pp. 1372-1384. (12 января 2005). Дата обращения: 6 июля 2009. Архивировано 9 июня 2012 года.
  12. Liu, Michael C.; Matthews, Brenda C.; Williams, Jonathan P.; Kalas, Paul G. A Submillimeter Search of Nearby Young Stars for Cold Dust: Discovery of Debris Disks around Two Low-Mass Stars (англ.). The Astrophysical Journal, Volume 608, Issue 1, pp. 526-532. (6 января 2004). Дата обращения: 6 июля 2009. Архивировано 3 апреля 2012 года.
  13. Michael C. Liu. Substructure in the Circumstellar Disk Around the Young Star AU Microscopii (англ.). Science 3 September 2004: 1442-1444 (2004). Дата обращения: 7 июля 2009. Архивировано 3 апреля 2012 года.
  14. В газопылевом диске близлежащей звезды открыты таинственные «волны»
  15. Young planets orbiting red dwarfs may lack ingredients for life (недоступная ссылка). Дата обращения: 8 января 2019. Архивировано 9 января 2019 года., January 8, 2019
  16. Peter Plavchan et al. A planet within the debris disk around the pre-main-sequence star AU Microscopii, 24 June 2020
  17. Mysterious Ripples Found Racing Through Planet-Forming Disk. Hubblesite. Дата обращения: 8 октября 2015. Архивировано 11 октября 2015 года.

См. также

Ссылки

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.