Электротехническая сталь
Электротехни́ческая сталь, также имеет названия динамная сталь, трансформаторная сталь, кремнистая электротехническая сталь — сплав железа обычно с кремнием, иногда легированный алюминием, готовый продукт выпускается в виде тонких листов толщиной от 0,05 до 2 мм.
Магнитомягкий ферромагнитный материал. Имеет улучшенные ферромагнитные свойства для применения в знакопеременных магнитных полях.
Используется при изготовлении магнитопроводов различного электротехнического оборудования — электромагнитов, трансформаторов, генераторов, электродвигателей, дросселей, магнитопроводов реле, феррорезонансных стабилизаторов напряжения и др.
Свойства
В зависимости от требуемых свойств, электротехническая сталь содержит различное количество кремния. В зависимости от технологии производства электротехнические стали разделяют на холоднокатаные (изотропные или анизотропные; количество кремния до 3,3 %) и горячекатаные (изотропные; количество кремния до 4,5 %). Нередко в качестве легирующей добавки в электротехнической стали может содержаться алюминий (до 0,5 %). Иногда электротехнические стали условно разделяют на динамную (изотропную), трансформаторную (анизотропную), релейную (изотропную, нелегированную).
Электромагнитные свойства
Как правило, электротехнические стали стараются выполнить:
- с возможно более высокой магнитной проницаемостью;
- с возможно более низкой коэрцитивной силой и с узкой петлёй гистерезиса.
- с возможно более высоким удельным электрическим сопротивлением для снижения потерь на нагрев сердечника вследствие эффекта вихревых токов[1].
Относительная магнитная проницаемость μ/μ0 электротехнической стали сильно зависит от величины приложенного поля. К примеру, сталь электротехническая сернистая Э43 в слабых полях имеет μ/μ0 = 600—1000, в средних полях — до 11000.[2]
Производство
Электротехническая сталь выпускается в виде листов (часто в рулонах) и узкой ленты толщиной 0,05—1 мм. Качество электротехнической стали характеризуется электромагнитными свойствами (удельными потерями, коэрцитивной силой и индукцией), изотропностью свойств (разницей в значениях свойств металла вдоль и поперёк направления прокатки), геометрическими размерами и качеством листов и полос, механическими свойствами, а также параметрами покрытия. Снижение удельных потерь в стали обеспечивает уменьшение потерь энергии, а повышение максимальной индукции стали позволяет уменьшить габариты, снижение анизотропии свойств улучшает характеристики устройств с вращающимися магнитопроводом. Электротехническая сталь обычно поставляется в отожжённом состоянии. Для снятия механических напряжений, возникающих при изготовлении деталей, проводят дополнительный кратковременный отжиг при 800—850°С. Некоторые электротехнические стали поставляются в неотожжённом виде; в этом случае для обеспечения заданного уровня свойств после механической обработки необходимо проводить термическую обработку деталей.
Для изотропной тонколистовой электротехнической стали в различных странах приняты следующие стандарты: ГОСТ 21427.2-83, ASTM A677/A677M-89, EN 10106-96.
См. также
Примечания
- Школа электрика: Электротехническая сталь и её свойства
- Дружинин В. В. Магнитные свойства электротехнической стали/В. В. Дружинин. — М.: Энергия, 1974—240 с. С.15
Ссылки
- Лит.: Дубров Н. Ф., Лапкин Н. И., Электротехнические стали, М., 1963; Дружинин В. В., свойства электротехнической стали, 2 изд., М., 1974.
- Электротехническая сталь — статья из Большой советской энциклопедии.
- ГОСТ 3836-83 Сталь электротехническая нелегированная тонколистовая и ленты. Технические условия.
- ГОСТ 21427.1-83 Сталь электротехническая холоднокатаная анизотропная тонколистовая. Технические условия.
- ГОСТ 21427.2-83 Сталь электротехническая холоднокатаная изотропная тонколистовая. Технические условия
- Дружинин В. В. Магнитные свойства электротехнической стали/В. В. Дружинин. — М.: Энергия, 1974—240 с.
- Казаджан Л. Б. Магнитные свойства электротехнических сталей и сплавов / Под. ред. В. Д. Дурнева. — М.: ООО «Наука и технологии», 2000—224 с.