Число Коксетера

Число Коксетера  — характеристика конечной неприводимой группы Коксетера. В случае, когда группа Коксетера является группой Вейля простой алгебры Ли , то говорят о числе Коксетера алгебры .

Понятие названо в честь Гарольда Коксетера.

Определение

Существует несколько эквивалентных определений этого числа.

  • Число Коксетера равно количеству корней, делённому на ранг. Эквивалентно, число Коксетера равно удвоенному числу отражений в группе Коксетера, делённому на ранг. Если группа построена по простой алгебре Ли, то размерность этой алгебры равна n(h + 1), где n — ранг, и h — число Коксетера.
  • Элементом Коксетера (иногда элементом Киллинга — Коксетера) называется произведение всех простых отражений (не путать с элементом группы Коксетера наибольшей длины). Числом Коксетера называется порядок элемента Коксетера.
  • Если — разложение старшего корня по простым корням, то число Коксетера равно .
    • Эквивалентно, если — такой элемент, что , то .
  • Число Коксетера — это наибольшая из степеней базисных инвариантов группы Коксетера.

Таблица значений

Группа Коксетера и символ Шлефли Граф Коксетера Диаграмма Дынкина Число Коксетера Двойственное число Коксетера Степени базисных инвариантов
An [3,3...,3] ... ... n + 1 n + 1 2, 3, 4, ..., n + 1
Bn [4,3...,3] ... ... 2n 2n 1 2, 4, 6, ..., 2n
Cn ... n + 1
Dn [3,3,..31,1] ... ... 2n 2 2n 2 n; 2, 4, 6, ..., 2n 2
E6 [32,2,1] 12 12 2, 5, 6, 8, 9, 12
E7 [33,2,1] 18 18 2, 6, 8, 10, 12, 14, 18
E8 [34,2,1] 30 30 2, 8, 12, 14, 18, 20, 24, 30
F4 [3,4,3]
12 9 2, 6, 8, 12
G2 [6]
6 4 2, 6
H3 [5,3] - 10 2, 6, 10
H4 [5,3,3] - 30 2, 12, 20, 30
I2(p) [p] - p 2, p

Вариации и обобщения

Дуальное число Коксетера

В случае, когда группа Коксетера является группой Вейля простой алгебры Ли , можно ввести дуальное (двойственное) число Коксетера . Такое понятие, видимо, впервые появилось в статье Спрингера и Стейнберга 1970 года[1] и часто встречается в теории представлений. Определить это число можно любым из следующих способов.

  • Если — это полусумма положительных корней, а — это старший корень, то .
  • Если — это старший из коротких корней, разложенный по простым корням, то .
  • Удвоенное дуальное число Коксетера равно отношению двух инвариантных симметричных билинейных форм на алгебре Ли : формы Киллинга и формы, в которой старший корень имеет длину 2.
  • По таблице выше.

Для алгебр Ли с простыми связями число Коксетера и дуальной число Коксетера совпадают. Дуальное число число Коксетера не следует путать с числом Коксетера дуальной алгебры Ли.

Для аффинной алгебры Ли значение уровня, равное , называется критическим, при этом значении универсальная обертывающая алгебра имеет большой центр.

Примечания

Ссылки

  • Н. Бурбаки, Элементы математики, Группы и алгебры Ли, Главы IV-VI, М.: Мир, 1972.
  • J. Humphreys, Reflection groups and Coxeter groups, Cambridge University Press, 1990.
  • Etingof, Pavel I.; Frenkel, Igor; Kirillov, Alexander A. (1998), Lectures on Representation Theory and Knizhnik–Zamolodchikov Equations, Mathematical Surveys and Monographs 58, American Mathematical Society, ISBN 0821804960
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.