Формула Лоренца — Лоренца

Фо́рмула Ло́ренца — Ло́ренца связывает показатель преломления вещества с электронной поляризуемостью частиц (атомов, ионов, молекул), из которых оно состоит. Формулу получили датский физик Людвиг В. Лоренц (дат. Ludvig Valentin Lorenz ) и голландский физик Хендрик А. Лоренц (нидерл. Hendrik Antoon Lorentz) в 1880 году независимо друг от друга[1][2].

Определение

Если вещество состоит из частиц одного сорта, то формула имеет вид[3]:

где  — показатель преломления,  — количество частиц в единице объёма, а  — их поляризуемость.

Уточним, что под поляризуемостью частицы здесь понимается коэффициент , связывающий напряжённость электрического поля , действующего на частицу, с дипольным моментом , образующимся у частицы под действием этого поля[4]:

Здесь и далее жирным шрифтом выделяются векторные величины.

Формулу записывают также в виде:

где  — молекулярная масса вещества,  — его плотность, а  — постоянная Авогадро. При этом величину называют молекулярной рефракцией.

Если вещество состоит из частиц нескольких сортов с поляризуемостями и объёмными концентрациями , то формула принимает вид:

Вывод формулы основан на рассмотрении микроскопического поля и его взаимодействия с атомами, молекулами и ионами вещества. При выводе предполагается, что среда является изотропной, а составляющие её частицы собственным дипольным моментом не обладают[5].

Обсуждение

Воздействие внешнего электромагнитного поля с относительно высокими частотами, соответствующими видимому и УФ-диапазону спектра, приводит к смещению только электронных оболочек относительно атомных ядер, в то время как более массивные частицы (атомы и ионы) за период колебаний поля сместиться с занимаемых ими мест не успевают. Соответственно, в поляризацию среды вносит вклад только электронная поляризация, и показатель преломления оказывается связан с электронной поляризуемостью частиц формулой Лоренца — Лоренца.

При более низких частотах колебаний поля атомы и ионы успевают смещаться под действием поля, и поэтому вносят свой вклад в общую поляризацию. В результате становится необходимым, помимо электронной поляризуемости, учитывать атомную и ионную поляризуемости. Аналогом формулы Лоренца — Лоренца для постоянных полей является формула Клаузиуса — Моссотти[6], описывающая связь диэлектрической проницаемости вещества с поляризуемостями составляющих его частиц:

В полярных диэлектриках частицы среды обладают собственным дипольным моментом, то есть таким, который они имеют и в отсутствие внешнего электрического поля. Непосредственное применение формулы Лоренца — Лоренца в её обычном виде в таких случаях невозможно. Дальнейшим развитием формулы Лоренца — Лоренца, пригодным в том числе и для случая полярных диэлектриков (но для относительно низких частот колебаний поля), стала формула формула Ланжевена — Дебая[7].

Формула Лоренца — Лоренца лежит в основе структурной рефрактометрии. Она широко используется при изучении и контроле составов различных веществ, для исследования их строения и превращений, происходящих в результате протекания химических реакций[8][9].

Классическая теория дисперсии

Формула Лоренца — Лоренца является одним из оснований теории дисперсии света в классическом приближении[5][10]. В этой теории оптические электроны рассматриваются как дипольные осцилляторы, характеризуемые собственной частотой . В случае, когда затуханием колебаний электронов можно пренебречь[11], уравнение колебаний имеет вид:

где  — смещение электрона из положения равновесия,  — вторая производная по времени (ускорение электрона), и  — заряд и масса электрона соответственно, а  — напряжённость электрического поля.

В результате решения уравнения для монохроматического поля, изменяющегося с частотой , сначала получается зависимость , а затем и поляризуемость :

После подстановки полученного выражения в формулу Лоренца — Лоренца возникает дисперсионная формула вида:

Обычно свой вклад в формирование показателя преломления вносят несколько линий поглощения с частотами . В таком случае дисперсионная формула принимает вид:

где  — безразмерные коэффициенты (силы осцилляторов), показывающие эффективность участия соответствующих осцилляторов в явлениях дисперсии и удовлетворяющие правилу .

История

Хендрик А. Лоренц
Людвиг В. Лоренц

Статьи Людвига В. Лоренца[12] и Хендрика А. Лоренца[13] с сообщениями о получении формулы были опубликованы практически одновременно в 1880 году. М. Борн и Э. Вольф такое одновременное получение результата учёными с почти одинаковыми (в оригинальном написании) фамилиями называют «удивительным совпадением»[5].

Сам Хендрик Лоренц в своей книге писал так: «…этот результат был найден Лоренцом в Копенгагене за несколько времени до того, как я вывел его из электромагнитной теории света, что, конечно, является любопытным случаем совпадения»[14].

Хотя Хендрик А. Лоренц не был тем, кто первым вывел формулу, и на эту роль не претендовал, в её наименовании, обычно употребляемом в англоязычной литературе, его имя стоит в начале: «Lorentz — Lorenz equation», «Lorentz — Lorenz formula» или «Lorentz — Lorenz relation».

Ранее, до того, как в русской научно-технической литературе сложилась общепринятая традиция, использовались различные варианты наименования формулы, включая такие, как формула «Лоренц — Лоренца», «Лоренц — Лорентца», «Лорентц — Лоренца» и «Лорентца — Лоренца».

В своё время значение формулы Лоренца — Лоренца не исчерпывалось только тем, что она дала возможность количественного описания формирования значения показателя преломления веществ. Как писали М. Борн и Э. Вольф, «…она служит мостом, связывающим феноменологическую теорию Максвелла с теорией атомного строения вещества»[5].

Несмотря на солидный «возраст», формулу Лоренца — Лоренца в настоящее время не только достаточно широко применяют, но и продолжают развивать, расширяя возможности её использования[15].

См. также

Примечания

  1. Лоренца — Лоренца формула // Физическая энциклопедия / Гл. ред. А. М. Прохоров. М.: Советская энциклопедия, 1990. — Т. 2. — С. 611. — 704 с. 100 000 экз. — ISBN 5-85270-061-4.
  2. Лоренца — Лоренца формула / Короленко П. В. // Большая российская энциклопедия : [в 35 т.] / гл. ред. Ю. С. Осипов. М. : Большая российская энциклопедия, 2004—2017.
  3. Здесь и далее используется система единиц измерения СГС.
  4. Гусев А. А. Поляризуемость // Физическая энциклопедия / Гл. ред. А. М. Прохоров. М.: Большая Российская энциклопедия, 1994. — Т. 4. — С. 72—74. — 704 с. 40 000 экз.
  5. Борн М., Вольф Э. Основы оптики. Изд. 2-е. М.: «Наука», 1973. — 720 с. 20 000 экз.
  6. Леванюк А. П. Клаузиуса — Мосотти формула // Физическая энциклопедия / Гл. ред. А. М. Прохоров. М.: Советская энциклопедия, 1990. — Т. 2. Добротность — Магнитооптика. — С. 373—374. — 704 с. 100 000 экз. — ISBN 5-85270-061-4.
  7. Главный редактор А. М. Прохоров. Ланжевена — дебая формула // Физический энциклопедический словарь. — М.: Советская энциклопедия. — 1983.
  8. Бацанов С. С. Структурная рефрактометрия. Изд. 2-е. М.: «Высшая школа», 1976. — 304 с.
  9. Иоффе Б. В. Рефрактометрические методы химии. Л.: «Химия», Ленинградское отделение, 1983. — 350 с.
  10. Бутиков Е. И. Оптика. — 2-е изд., перераб. и доп.. СПб.: Невский Диалект, БХВ-Петербург, 2003. — 480 с. 3000 экз. — ISBN 5-94157-380-4.
  11. Затухание мало, если частота света существенно отличается от частот, на которых располагаются линии поглощения вещества.
  12. L. Lorenz. "Über die Refractionsconstante, " Ann. Phys. 1880. V. 11, 70—103.
  13. H. A. Lorentz, Über die Beziehung zwischen der Fortpflanzungsgeschwindigkeit des Lichtes und der Körperdichte. Ann. Phys. 1880. V. 9, 641—665.
  14. Лорентц Г. А. Теория электронов и её применение к явлениям света и теплового излучения. М.: Государственное издательство технико-теоретической литературы, 1956. — С. 215. — 472 с. — (Классики естествознания). 5000 экз.
  15. Mário G. Silveirinha. Generalized Lorentz-Lorenz formulas for microstructured materials. Phys. Rev. B. 2007, Vol.76, Issue 24, 245117, 17 December 2007.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.