Теорема Стоуна о группах унитарных операторов в гильбертовом пространстве

Теорема Стоуна о группах унитарных операторов в гильбертовом пространстве — важный результат функционального анализа, утверждающий, что всякая сильно непрерывная однопараметрическая группа унитарных операторов представляется в виде:

,

где  — некоторый самосопряженный оператор, а  — параметр. Верно и обратное: всякому самосопряженному оператору с помощью представления Стоуна можно поставить в соответствие сильно непрерывную однопараметрическую группу унитарных операторов.

Теорема была доказана американским математиком Маршаллом Стоуном в 1930 году и имела большое значение для становления квантовой механики, а также послужила толчком к созданию теории Купмана — фон Неймана.

Сильно непрерывная однопараметрическая группа унитарных операторов обладает следующими свойствами:

.

Важность результата для физики заключается в том, что он гарантирует существование и единственность решений уравнений Шрёдингера и Лиувилля, а также сохранение нормировок волновых функций.

Ссылки

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.