Сходимость по распределению

Сходи́мость по распределе́нию в теории вероятностей — вид сходимости случайных величин.

Определение

Пусть дано вероятностное пространство и определённые на нём случайные величины . Каждая случайная величина индуцирует вероятностную меру на , называемую её распределением.

Случайные величины сходятся по распределению к случайной величине , если распределения слабо сходятся к распределению , то есть

для любой непрерывной ограниченной[1][2] функции .

Замечания

  • Пользуясь теоремой о замене меры в интеграле Лебега, последнее равенство может быть переписано следующим образом:
.
  • Предел по распределению не единствен. Если распределения двух случайных величин идентичны, то они одновременно являются или не являются пределом по распределению последовательности случайных величин.

Свойства сходимости по распределению

  • Случайные величины сходятся по распределению к , если их функции распределения сходятся к функции распределения предела во всех точках непрерывности последней:
.
почти всюду,
то . Обратное, вообще говоря, неверно!
.
Обратное, вообще говоря, неверно.

См. также

Примечания

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.