Перенормировка

Перенормиро́вка в квантовой теории поля — процедура устранения ультрафиолетовых расходимостей в классе теорий, называемых перенормируемыми. С физической точки зрения соответствует изменению начальных (затравочных) лагранжианов таких теорий с тем, чтобы результирующая динамика теории не содержала сингулярностей (и совпадала с наблюдаемой, если теория претендует на описание действительности). Другими словами, перенормировка — это уточнение лагранжиана взаимодействия с той целью, чтобы он не приводил к расходимостям. Члены, добавляемые для этого в лагранжиан, называются контрчленами.

В реальных вычислениях для проведения перенормировки используются процедуры регуляризации.

Перенормируемость

Если процедура перенормировки устраняет все возможные типы ультрафиолетовых расходимостей в какой-либо модели квантовой теории поля, то модель называется перенормируемой. Технически перенормируемость модели означает, что в ней может возникнуть лишь конечный набор независимых ультрафиолетовых расходимостей. Это в свою очередь значит, что все их можно устранить введением конечного числа контрчленов. После этой процедуры теория приобретает замкнутый вид и может использоваться для предсказаний явлений.

Процедура перенормировки: технические подробности

При конкретных вычислениях перенормировку выполняют следующим образом. Выбирают какой-либо из вариантов регуляризации. К затравочному лагранжиану, состоящему обычно из небольшого числа слагаемых со вполне конкретным набором полевых функций, дописываются несколько контрчленов. Контрчлены имеют такой же вид, как слагаемые исходного лагранжиана, только коэффициентами при них стоят некоторые неизвестные константы. На основании этого нового лагранжиана вычисляются физические величины, выражающиеся через петлевые интегралы, которые теперь конечны. При произвольной величине коэффициентов при контрчленах получающиеся физические величины будут при снятии регуляризации стремиться к бесконечности. Однако можно подобрать эти коэффициенты таким образом, чтобы основные параметры теории оставались конечными и после снятия регуляризации. Это требование позволяет зафиксировать окончательный вид контрчленов. Подчеркнём, что этот вид явно зависит от схемы регуляризации и вычитания.

Если теория перенормируема, то для того, чтобы все возможные наблюдаемые стали конечными, достаточно конечного числа контрчленов.

История

Самодействие в классической физике

Проблема бесконечностей впервые возникла в классической электродинамике точечных частиц в XIX и начале XX века.

Масса заряженной частицы должна включать энергию-массу, содержащуюся в электростатическом поле частицы (электромагнитную массу). Пусть частица с зарядом q представляет собой заряженную сферическую оболочку радиуса . Энергия поля выражается как

и становится бесконечной, когда стремится к нулю. Это приводит к тому, что точечная частица должна обладать бесконечной инерцией и, следовательно, не может находиться в ускоренном движении. Значение , при котором равняется половине массы электрона, называется классическим радиусом электрона, который (полагая ) оказывается равным

м,

где  — постоянная тонкой структуры, а  — комптоновская длина волны электрона.

Полная масса сферической заряженной частицы должна включать «голую» массу сферической оболочки (в добавление к вышеупомянутой «электромагнитной» массе, связанной с её электрическим полем). Если формально позволить «голой» массе принимать отрицательные значения, оказывается возможным получить согласующуюся с экспериментом массу электрона даже в пределе нулевого радиуса оболочки. Этот приём был назван перенормировкой. Лоренц и Абрахам предприняли попытку разработать классическую теорию электрона именно в таком ключе. Эта ранняя работа вдохновила более поздние попытки регуляризации и перенормировки в квантовой теории поля.

При вычислении электромагнитных взаимодействий заряженных частиц существует соблазн пренебречь самодействием — действием поля частицы на неё саму. Но самодействие необходимо, чтобы объяснить радиационное трение: торможение заряженных частиц, когда они испускают излучение. Если считать электрон точечным, то значение самодействия расходится по тем же причинам, по которым расходится и электромагнитная масса, поскольку поле обратно пропорционально квадрату расстояния от источника.

Теория Абрахама — Лоренца включает в себя некаузальное (нарушающее принцип причинности) «предускорение»: существует решение уравнений движения, согласно которому свободный электрон может начать ускоряться без приложения к нему какой-либо силы. Это признак того, что точечный предел несовместим с реальностью.

Проблема бесконечностей в квантовой электродинамике

После построения в конце 1920-х годов релятивистской квантовой механики и первых удачных вычислений в рамках этой теории были предприняты попытки провести расчёты и перенормировки таких параметров, как масса и заряд электрона. Однако они сразу же наткнулись на серьёзную трудность: согласно формулам квантовой теории поля и заряд, и масса электрона изменяются при взаимодействии с электромагнитным полем на бесконечную величину.

В квантовой теории поля проблема расходимости менее выражена, чем в классической, поскольку в квантовой теории поля заряженная частица испытывает колебания вокруг среднего положения (так называемый Zitterbewegung) благодаря интерференции с виртуальными парами частица-античастица (то есть между состояниями с положительной и отрицательной энергией), вследствие чего заряд эффективно размывается по области, сравнимой по размерам с комптоновской длиной волны. Поэтому в квантовой теории электромагнитная масса расходится лишь как логарифм радиуса частицы.

Эта проблема стояла перед физиками около 20 лет, и только к концу 1940-х годов усилиями Фейнмана, Швингера и Томонаги удалось понять, что же было неправильным в подходе к перенормировкам. Они построили теорию, свободную от бесконечностей — квантовую электродинамику (КЭД), и расчёты в рамках этой теории были в дальнейшем подтверждены экспериментально.

Перенормировки вне физики элементарных частиц

Как это нередко бывает, концепция перенормировок, придуманная в физике элементарных частиц, оказалась необычайно плодотворной в других областях физики, в особенности в физике конденсированных сред, где перенормировки имеют особенно наглядную интерпретацию. Более конкретно, перенормировки применяются при описании фазовых переходов, эффекта Кондо и т. д. В случае фазового перехода ферромагнетик-парамагнетик ренормгруппа естественным образом получается из построения Каданова и термодинамической гипотезы подобия.

См. также

Литература

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.