Первообразный корень (теория чисел)

Первообразный корень по модулю mцелое число g такое, что

и

при

где функция Эйлера. Другими словами, первообразный корень — это образующий элемент мультипликативной группы кольца вычетов по модулю m.

Чтобы не проверять все от до , достаточно проверить три условия:

  1. Является ли числом взаимно-простым с , и если нет - то это не первообразный корень.
  2. Так как , всегда число четное, для всех чисел , то имеет как минимум один простой делитель - простое число , то следовательно, для того, чтобы отсеять значительное количество не-корней, достаточно проверить для числа, подходящего на первообразный корень по модулю .[1] Если результат +1 m , то g - не корень, в ином случае результат -1 m, когда g - это возможно-первообразный корень.
  3. Далее, следует убедиться, что , для всех , где - простой делитель числа , полученный в результате его факторизации.

Свойства

Существование

Первообразные корни существуют только по модулям вида

,

где простое число, ― целое. Только в этих случаях мультипликативная группа кольца вычетов по модулю m является циклической группой порядка .

Индекс числа по модулю

Для первообразного корня g его степени g0=1, g, …, gφ(m)1 несравнимы между собой по модулю m и образуют приведенную систему вычетов по модулю m. Поэтому для каждого числа a, взаимно простого с m, найдется показатель ℓ, 0 ⩽ ℓ ⩽ φ(m)1, такой, что

Такое число ℓ называется индексом числа a по основанию g.

Количество

Если по модулю m существует первообразный корень g, то всего существует φ(φ(m)) различных первообразных корней по модулю m, причём все они имеют вид , где и .

Минимальный корень

Исследования Виноградова показали, что существует такая константа , что для всякого простого существует первообразный корень . Другими словами, для простых модулей минимальный первообразный корень имеет порядок . Математик Виктор Шуп из Университета Торонто показал, что если «Обобщённая гипотеза Римана» верна, то первообразный корень есть среди первых чисел натурального ряда[2].

История

Первообразные корни для простых модулей были введены Эйлером, но существование первообразных корней для любых простых модулей было доказано лишь Гауссом в «Арифметических исследованиях» (1801 год).

Примеры

Число 3 является первообразным корнем по модулю 7. Чтобы в этом убедиться, достаточно каждое число от 1 до 6 представить как некоторую степень тройки по модулю 7:

Примеры наименьших первообразных корней по модулю m (последовательность A046145 в OEIS):

Модуль m 234567891011121314
Первообразный корень 12325323223

См. также

Примечания

  1. Primitive Root - Competitive Programming Algorithms. cp-algorithms.com. Дата обращения: 27 октября 2020.
  2. Bach, Eric; Shallit, Jeffrey. Algorithmic Number Theory (Vol I: Efficient Algorithms). — Cambridge: The MIT Press, 1996. — P. 254. — ISBN 978-0-262-02405-1.

Литература

  • Виноградов И. М. Глава 6. Первообразные корни и индексы // Основы теории чисел. — 1952. — 182 с.
  • Нестеренко Ю. В. Глава 7. Первообразные корни и индексы // Теория чисел. М.: «Академия», 2008. — 464 с.

Ссылки

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.