Огибающая

Кривая называется огиба́ющей семейства кривых , зависящих от параметра , если она в каждой своей точке касается хотя бы одной кривой семейства и каждым своим отрезком касается бесконечного множества этих кривых.

Огибающая семейства прямых.

Определение

Пусть имеется семейство кривых , зависящих от параметра и задающихся уравнением: . Тогда огибающая семейства кривых определяется как геометрическое множество точек , для которых существует значение , для которого выполнено оба равенства:

где частная производная функции по параметру .

Примеры

  • Для семейства окружностей одинакового радиуса с центрами на прямой огибающая состоит из двух параллельных прямых.
  • Астроида является огибающей семейства отрезков постоянной длины, концы которых расположены на двух взаимно перпендикулярных прямых.
  • Парабола является огибающей семейства срединных перпендикуляров для отрезков, соединяющих фиксированную точку (фокус параболы) и фиксированную прямую (директрису параболы).
Прямые Симсона (красным цветом) являются касательными к дельтоиде Штейнера (синим цветом).

См. также

Литература

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.