Нуклеоид

Нуклео́ид (англ. Nucleoid) — неправильной формы зона в цитоплазме прокариотической клетки, в которой находится геномная ДНК и ассоциированные с ней белки. На долю ДНК приходится около 60 % массы нуклеоида; помимо ДНК, нуклеоид содержит РНК и белки[1]. Белки нуклеоида, которые обеспечивают пространственную организацию геномной ДНК, называют нуклеоидными белками или нуклеоид-ассоциированными белками; они не имеют ничего общего с гистонами, упаковывающими ДНК у эукариот. В отличие от гистонов, ДНК-связывающие белки нуклеоида не формируют нуклеосомы и обеспечивают компактизацию геномной ДНК другим способом[2]. Несмотря на аморфную форму, отдельные гены располагаются в нём упорядоченно[3].

Микрофотография бактериальной клетки с нуклеоидом, выделенным зелёной пунктирной линией

Бактерии

Бактериальные хромосомы

В большинстве случаев геном бактерии представлен кольцевой молекулой ДНК, которую также называют хромосомой. Как правило, бактериальная хромосома имеет длину около 1 мм, она занимает до 20 % цитоплазмы и имеет объём около 0,2 мкм³. Репликация геномной ДНК начинается от участка инициации (oriC), из которого две репликативные вилки движутся в противоположных направлениях и встречаются в сайте терминации (Ter), в котором далее происходит размыкание сцепленных дочерних хромосом. Количество хромосом в бактериальной клетке зависит не только от видовой принадлежности, но и от фазы развития популяции. В качестве бактерий, постоянно имеющих несколько хромосом, можно привести Deinococcus radiodurans (от 4 до 10 хромосом), Borrelia hermsii (от 8 до 16 хромосом), Desulfovibrio gigas (от 9 до 17 хромосом), Azotobacter vinelandii (до 80 хромосом). Молодые клетки обычно содержат больше хромосом, чем старые. Иногда хромосомы представляют не просто копии геномной ДНК: в некоторых случаях геном распределяется между несколькими неодинаковыми хромосомами и внехромосомными элементами (плазмидами). Так, у Agrobacterium tumefaciens, Brucella melitensis и Rhodobacter sphaeroides имеются две разные хромосомы, а у Bacillus cereus, Leptospira interrogans и Rhizobium meliloti кроме хромосом есть одна или две мегаплазмиды, состоящие из 100—500 тысяч пар оснований (п. о.)[4].

Ряд бактерий имеют и кольцевые, и линейные хромосомы, а некоторые — только линейные. Например, линейная хромосома имеется у возбудителя болезни ЛаймаBorrelia burgdorferi. Известны и линейные плазмиды. Роль теломер при этом могут выполнять или одноцепочечные концевые шпильки, или особые белки, ковалентно связанные с концами линейной хромосомы или плазмиды; в некоторых случаях на время репликации линейная хромосома становится кольцевой[5].

ДНК-связывающие белки

За компактизацию бактериальной хромосомы отвечают несколько разнородных белков, из которых наиболее важны HU, H-NS и SMC. Белки HU и H-NS называют гистоноподобными, их взаимодействие с ДНК зависит от её последовательности, наличия в молекуле шпилек и изгибов. Выявлены также минорные гистоноподобные белки FIS и IHF, которые, наряду с HU и H-NS, не только обеспечивают пространственную организацию бактериальной геномной ДНК, но также влияют на её репликацию, рекомбинацию и экспрессию генов. HU, совместно с ДНК-гиразой, обеспечивает отрицательную сверхспирализацию ДНК. H-NS компактизует ДНК, влияет на её сверхспирализацию, вызывает в ней изгибы, однако по большей части он задействован в экспрессии генов: под его контролем находятся до 40 генов. Белки SMC имеются у представителей всех трёх доменов жизни. Они гомологичны миозину, у эукариот они играют роль моторов при конденсации хроматина[6].

Таким образом, можно выделить следующие уровни компактизации бактериальной ДНК. Первый уровень обеспечивается гистоноподобными белками HU и H-NS. Второй уровень — отрицательная сверхспирализация — обеспечивается SMC-белками и топоизомеразами. Наконец, высший уровень компактизации представлен независимо сверхспирализованными петлями (доменами), на которые разделена бактериальная хромосома. В состав каждого домена входит около 10 тысяч п. о[7].

Археи

У архей компактные нуклеоиды располагаются в центре клетки, как и у бактерий, и ориентированы вдоль её продольной оси. Число хромосом зависит от видовой принадлежности и фазы развития популяции, кроме того, в большинстве случаев в молодых клетках содержится больше хромосом. Так, у Methanocaldococcus jannaschii в стационарной фазе роста имеется от одной до пяти хромосом, а в фазе экспоненциального роста — 3—15 хромосом. Как и бактерии, археи могут иметь плазмиды[8].

У многих архей, например, у эвриархеот, нижний уровень компактизации ДНК обеспечивается белками, гомологичными гистонам эукариот. Гистоны архей по размеру уступают гистонам эукариот и имеют укороченный N-концевой участок, поэтому взаимодействуют с ДНК несколько иначе. Нуклеосомы архей не имеют октамерной структуры в силу отсутствия гистонов H2A и H2B, однако они похожи на тетрасому (H3/H4)2. Кренархеоты, ведущие термофильный и гипертермофильный образ жизни, не имеют гистонов, но у них имеются негистоновые ДНК-связывающие белки. Например, один из них, Sul7D, взаимодействует с малой бороздкой ДНК и защищает её от тепловой денатурации[9].

В отличие от бактерий, геномная ДНК архей характеризуется положительной сверхспирализацией, которая, как полагают, стабилизирует ДНК у экстремофильных видов. Положительную сверхспирализацию обеспечивает так называемая «обратная» гираза[10].

Примечания

  1. Нетрусов, Котова, 2012, с. 37—38.
  2. Wang W., Li G. W., Chen C., Xie X. S., Zhuang X. Chromosome organization by a nucleoid-associated protein in live bacteria. (англ.) // Science (New York, N.Y.). — 2011. — 9 September (vol. 333, no. 6048). P. 1445—1449. doi:10.1126/science.1204697. PMID 21903814.
  3. Кассимерис, Лингаппа, Плоппер, 2016, с. 945.
  4. Пиневич, 2006, с. 194—195.
  5. Пиневич, 2006, с. 195.
  6. Пиневич, 2006, с. 196—197.
  7. Пиневич, 2006, с. 197—198.
  8. Пиневич, 2006, с. 198.
  9. Пиневич, 2006, с. 198—199.
  10. Пиневич, 2006, с. 199.

Литература

  • Пиневич А. В. Микробиология. Биология прокариотов: в 3 т.. СПб.: Издательство С.-Петербургского университета, 2006. — Т. I. — 352 с. — ISBN 5-288-04057-5.
  • Нетрусов А. И., Котова И. Б. Микробиология. — 4-е изд., перераб. и доп.. М.: Издательский центр «Академия», 2012. — 384 с. — ISBN 978-5-7695-7979-0.
  • Кассимерис Л., Лингаппа В. Р., Плоппер Д. . Клетки по Льюину. М.: Лаборатория знаний, 2016. — 1056 с. — ISBN 978-5-906828-23-1.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.