Кривошипно-шатунный механизм

Кривошипно-шатунный механизм (КШМ) предназначен для преобразования возвратно-поступательного движения поршня во вращательное движение (например, во вращательное движение коленчатого вала в двигателях внутреннего сгорания), и наоборот. Детали КШМ делят на две группы, это подвижные и неподвижные детали:

Кривошипно-шатунный механизм

Принцип действия

Прямая схема: Поршень под действием давления газов совершает поступательное движение в сторону коленчатого вала. С помощью кинематических пар «поршень-шатун» и «шатун-вал» поступательное движение поршня преобразуется во вращательное движение коленчатого вала. Коленчатый вал состоит из:

  • шатунных шеек
  • коренных шеек
  • противовеса

Обратная схема: Коленчатый вал под действием приложенного внешнего крутящего момента совершает вращательное движение, которое через кинематическую цепь «вал-шатун-поршень» преобразуется в поступательное движение поршня.

Типы и виды КШМ

  • Центральный КШМ, у которого ось цилиндра пересекается с осью коленчатого вала.
  • Смещенный КШМ, у которого ось цилиндра смещена относительно оси коленчатого вала на величину а;
  • V-образный КШМ (в том числе с прицепным шатуном), у которого два шатуна, работающие на левый и правый цилиндры, размещены на одном кривошипе коленчатого вала.

По соотношению хода и диаметра поршня различают:

  • короткоходные[1](S/D<1) КШМ;
  • длинноходные (длинноходовые) (S/D>1) КШМ.

В автомобильных высокооборотистых ДВС преобладает короткоходная схема.

По наличию бокового усилия на гильзе КШМ бывает:

  • тронковый[2](с боковым усилием);
  • крейцкопфный[3] (разгруженный поршень);

История

В природе

Задние конечности кузнечиков представляют собой кривошипно-шатунный механизм с неполным оборотом.
Бедро и голень человека и роботов-андроидов тоже представляют собой кривошипно-шатунный механизм с неполным оборотом.

В Римской империи

Римская пилорама из Иераполиса из 3-го столетия н. э., наиболее ранняя известная машина с соединением кривошипа и шатуна.[4]

Самые ранние свидетельства появления на машине рукоятки в сочетании с шатуном относятся к пилораме из Иераполиса, 3-й век нашей эры, римский период, а также византийским камнережущим пилорамам в Герасе, Сирии и Эфесе, Малая Азия (6-й век нашей эры).[4] Ещё одна такая пилорама возможно существовала во 2 веке н. э. в римском городе Августа-Раурика (современная Швейцария), где был найден металлический кривошип.[5]

Уравнения движения поршня (для центрального КШМ)

Диаграмма показывающая геометрическое положение шатуннопоршневой оси — P, кривошипношатунной оси — N и центра кривошипа — O

Определения

l — длина шатуна (расстояние между шатуннопоршневой осью и кривошипношатунной осью)
r — радиус кривошипа (расстояние между кривошипношатунной осью и центром кривошипа, то есть половина хода поршня
A — угол поворота кривошипа (от «верхней мёртвой точки» до «нижней мёртвой точки»)
x — положение шатуннопоршневой оси (от центра кривошипа вдоль оси цилиндра)
v — скорость шатуннопоршневой оси (от центра кривошипа вдоль оси цилиндра)
a — ускорение шатуннопоршневой оси (от центра кривошипа вдоль оси цилиндра)
ω — угловая скорость кривошипа в радианах в секунду (рад/сек)

Угловая скорость

Угловая скорость кривошипа в оборотах в минуту (RPM):

Отношения в треугольнике

Как показано в диаграмме, центр кривошипа, кривошипношатунная ось и шатуннопоршневая ось образуют треугольник NOP.
Из теоремы косинусов следует, что:

Уравнения по отношению к угловому положению кривошипа (для центрального КШМ)

Уравнения, которые описывают циклическое движение поршня по отношению к углу поворота кривошипа.
Примеры графиков этих уравнений показаны ниже.

Положение

Положение относительно угла кривошипа (преобразованием отношений в треугольнике):

Скорость

Скорость по отношению к углу поворота кривошипа (первая производная взята, используя правило дифференцирования сложной функции):

Ускорение

Ускорение относительно угла кривошипа (вторая производная взята, используя правило дифференцирования сложной функции и частное правило):

Пример графиков движения поршня

График показывает x, x', x" по отношению к углу поворота кривошипа для различных радиусов кривошипа, где L — длина шатуна (l) и R — радиус кривошипа (r):

Единицами вертикальных осей являются: [дюймы] для положения, [дюймы/рад] для скорости, [дюймы/рад²] для ускорения.
Единицами горизонтальных осей является угол поворота кривошипа в [градусах].

Анимация движения поршня с шатуном одинаковой длины и с кривошипом переменного радиуса на графике выше:

Анимация движения поршня с различными радиусами кривошипа

Применение

Пистолет Люгера, модель 1898 г.

Кривошипно-шатунный механизм используется в двигателях внутреннего сгорания, поршневых компрессорах, поршневых насосах, швейных машинах, кривошипных прессах, в приводе задвижек некоторых квартирных и сейфовых дверей. Также кривошипно-шатунный механизм применялся в брусовых косилках.

См. также

Другие способы преобразования вращательного движения в прямолинейное

Здесь была возможность смены Хойкена.

Примечания

  1. Короткоходный двигатель / М. А. Латинский // Конда — Кун. М. : Советская энциклопедия, 1973. — (Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров ; 1969—1978, т. 13).
  2. Тронковый двигатель // Тихоходки — Ульяново. М. : Советская энциклопедия, 1977. — (Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров ; 1969—1978, т. 26).
  3. Крейцкопфный двигатель / В. И. Ефанов // Конда — Кун. М. : Советская энциклопедия, 1973. — (Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров ; 1969—1978, т. 13).
  4. Ritti, Tullia; Grewe, Klaus; Kessener, Paul (2007), «A Relief of a Water-powered Stone Saw Mill on a Sarcophagus at Hierapolis and its Implications», Journal of Roman Archaeology, 20, pp. 138—163
  5. Schiöler, 2009

Литература

Ссылки

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.