Коэффициенты формул численного дифференцирования

В математике для приближённого вычисления производных заданной таблично функции можно искать выражение значений производных через известные значения функции с помощью подходящего набора коэффициентов. Для этого можно использовать различные интерполяционные формулы или метод неопределённых коэффициентов.

Равноотстоящие узлы

Пусть — точка, в которой необходимо вычислить производные достаточно гладкой функции , — сетка равноотстоящих узлов с шагом и известны значения функции в этих узлах. В этом случае можно выразить формулы численного дифференцирования непосредственно через значения функции с помощью интерполяционной формулы Лагранжа. Такие формулы называются также безразностными, так как не требуют вычисления конечных или разделённых разностей[1].

В зависимости от расположения точки в сетке узлов (слева, справа или посередине) различают соответственно коэффициенты, вычисленные «вперёд», «назад» и симметричные коэффициенты.

Симметричные коэффициенты

Для получения симметричных коэффициентов число узлов в сетке должно быть нечётным. Тогда порядок погрешности приближения будет чётным числом.

Порядок производной Порядок погрешности −5−4−3−2−1012345
1 2 −1/201/2
4 1/12−2/302/3−1/12
6 −1/603/20−3/403/4−3/201/60
8 1/280−4/1051/5−4/504/5−1/54/105−1/280
2 2 1−21
4 −1/124/3−5/24/3−1/12
6 1/90−3/203/2−49/183/2−3/201/90
8 −1/5608/315−1/58/5−205/728/5−1/58/315−1/560
3 2 −1/210−11/2
4 1/8−113/80−13/81−1/8
6 −7/2403/10−169/12061/300−61/30169/120−3/107/240
4 2 1−46−41
4 −1/62−13/228/3−13/22−1/6
6 7/240−2/5169/60−122/1591/8−122/15169/60−2/57/240
5 2 −1/22−5/205/2−21/2
4 1/6−3/213/3−29/6029/6−13/33/2−1/6
6 −13/28819/36−87/3213/2−323/480323/48−13/287/32−19/3613/288
6 2 1−615−2015−61
4 −1/43−1329−75/229−133−1/4
6 13/240−19/2487/16−39/2323/8−1023/20323/8−39/287/16−19/2413/240

Например, третья производная с погрешностью второго порядка вычисляется как

Коэффициенты вперёд

Порядок производной Порядок погрешности 0 1 2 3 4 5 6 7 8
1 111       
23/221/2      
311/633/21/3     
425/12434/31/4    
5137/605510/35/41/5   
649/20615/220/315/46/51/6  
2 1121      
22541     
335/1226/319/214/311/12    
415/477/6107/61361/125/6   
5203/4587/5117/4254/933/227/5137/180  
6469/90223/10879/20949/1841201/101019/1807/10 
3 11331     
25/291273/2    
317/471/459/249/241/47/4   
449/829461/862307/81315/8  
5967/120638/153929/40389/32545/24268/51849/12029/15 
6801/80349/618353/1202391/101457/64891/30561/8527/30469/240
4 114641    
23142624112   
335/631137/2242/3107/21917/6  
428/3111/21421219/6176185/282/37/2 
51069/801316/1515289/602144/510993/244772/152803/20536/15967/240

Например, первая производная с погрешностью третьего порядка и вторая производная с погрешностью второго порядка вычисляются как

Нетрудно видеть, что коэффициенты для погрешности первого порядка представляют собой биномиальные коэффициенты с меняющимися знаками, что соответствует общей формуле для восходящих конечных разностей.

Коэффициенты назад

Для получения коэффициентов назад необходимо обратить знаки у коэффициентов вперёд для производных нечётных порядков и зеркально отразить таблицу коэффициентов справа налево:

Порядок производной Порядок погрешности 5 4 3 2 1 0
1 1    11
2   1/223/2
3  1/33/2311/6
2 1   121
2  1452
3 1  1331
2 3/271295/2
4 1 14641
22112426143

Например, первая производная с погрешностью третьего порядка и вторая производная с погрешностью второго порядка вычисляются как

Произвольная сетка узлов

Для получения коэффициентов для произвольно расположенных узлов удобно использовать метод неопределённых коэффициентов[2]. Для этого значение искомой производной порядка в точке записывается в виде

где

— неизвестные коэффициенты,
— остаточный член интерполяции.

Коэффициенты подбираются из условия , которое должно выполняться для функций , , ,..., . Получается следующая система линейных уравнений:

В этом случае погрешность вычислений будет иметь порядок .

Матрица системы является матрицей Вандермонда, которая также возникает при решении общей задачи интерполяции многочленами.

Примечания

Литература

Ссылки

См. также

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.