Иммуноглобулины M

Иммуноглобули́ны M (IgM) — класс антител. Молекулы IgM являются самыми тяжёлыми (молекулярная масса 990 кДа[1]) и наиболее сложно организованными иммуноглобулинами. Молекула свободного IgM представляет собой пентамер, каждый мономер которого состоит из двух тяжёлых цепей (μ-цепей) и двух лёгких цепей κ- или λ-типов. Мономеры объединены в пентамер посредством дисульфидных мостиков и J-цепи[2]. При первичном попадании в организм антигена иммуноглобулины IgM из всех антител образуются первыми[3][4]. Кроме того, они первыми появляются в онто- и филогенезе. У человека и других млекопитающих IgM синтезируются плазматическими клетками, находящимися в селезёнке[5][6]. IgM наиболее активны в антибактериальном иммунитете и при ряде аутоиммунных заболеваний[7].

Строение иммуноглобулина M

История изучения

Изучение иммуноглобулинов M началось с опубликованного в 1937 году сообщения о появлении в крови лошадей, гипериммунизированных полисахаридами пневмококка, антител, значительно превосходивших по массе обычные иммуноглобулины G кролика[8]. Из-за большого размера новые антитела сначала получили название «γ-макроглобулины», и возникшее позднее название нового класса антител — IgM — также связано с приставкой macro-. Обычно популяции IgM очень гетерогенны, так как они направлены против самых разных инфекционных агентов; это значительно затрудняло изучение их структуры. Впоследствии были найдены источники гомогенных IgM-антител. Выяснилось, что в некоторых случаях клетки множественной миеломы продуцируют гомогенные IgM[9]. В 1960-х годах были разработаны методы для индукции развития иммуноглобулин­продуцирующих опухолей (плазмацитом) у мышей, что позволило получить гомогенные популяции антител многих классов, в том числе и IgM[10].

Структура

Молекула IgM состоит из пяти мономерных субъединиц, располагающихся радиально, причём их Fc-фрагменты направлены в центр комплекса, а Fab-фрагменты обращены наружу. В каждом мономере тяжёлая цепь (μ-цепь) включает около 576 аминокислотных остатков (а. о.). Она содержит вариабельный домен (VH-домен) длиной около 110 а. о. и четыре константных домена (C-домена), обозначаемых Cμ1, Cμ2, Cμ3 и Cμ4 соответственно, однако в ней отсутствует шарнирный участок. Функционально его частично заменяет домен Cμ2, содержащий в первичной структуре остатки пролина. Существует предположение, что этот домен стал эволюционным предшественником шарнирной области γ- и α-цепей иммуноглобулинов G и A соответственно. Каждый C-домен состоит примерно из 110 а. о. и имеет хвостовой участок длиной около 20 а. о. По данным рентгеноструктурного анализа, остатки пролина в домене Cμ2 обеспечивают Fab-фрагменту гибкость, необходимую для обнаружения антигенных детерминант на поверхности антигенпрезентирующей или бактериальной клетки. Каждая μ-цепь связана с пятью олигосахаридами, присоединёнными к остаткам аспарагина: один «пришит» к домену Cμ1, три — к домену Cμ3 и один — к хвостовой части цепи[11]. Лёгкие цепи представлены λ- или κ-типом, содержат около 220 а. о. и включают вариабельный домен VL (около 110 а. о.) и константный домен CL (около 110 а. о.)[12].

Мономеры соединяются в пентамер посредством дисульфидных мостиков и J-цепи, с которой у каждого пентамера взаимодействует остаток цистеина, локализованный в C-концевом участке мономера. J-цепь представляет собой небольшой кислый белок длиной около 137 а. о. J-цепь связывает две μ-цепь посредством дисульфидных связей. Однако IgM существует не только в пентамерной форме. Известна мономерная форма IgM, которая находится на поверхности B-лимфоцитов и выполняет роль антигенраспознающего рецептора, а свободный IgM, входящий в состав плазмы крови, существует в виде пентамера. Мембранные мономеры отличаются от мономеров, входящих в состав пентамера, числом аминокислотных остатков в хвостовой части аминокислотной цепи[13][14].

Хотя у человека и мыши преобладающей формой IgM является пентамер, у шпорцевых лягушек (Xenopus sp.) IgM существует преимущественно в гексамерной форме[15][16], у костистых рыб — в тетрамерной форме. Пентамерная форма IgM преобладает и у хрящевых рыб (например, акул)[17][18]. Причина, по которой IgM человека и мыши существует в основном виде пентамера, неясна, так как теоретически он может формировать и стабильный гексамер[19][20]. Эксперименты на мышах показали, что у них может образовываться гексамерная форма IgM только в случае невозможности взаимодействия μ-цепей с J-цепью (если она не экспрессируется[21] или в μ-цепях отсутствуют остатки цистеина, необходимые для связывания с J-цепью[22][23]). Таким образом, у мыши гексамеры никогда не образуются при наличии J-цепей, а пентамерная форма может существовать как при наличии J-цепи, так и в её отсутствие[24].

С помощью разнообразных методов, таких как рентгеноструктурный анализ и ЯМР-спектроскопия, была установлена структура доменов Cμ1—Cμ4, которые экспрессировали по отдельности в клетках кишечной палочки Escherichia coli. Как и в случае остальных иммуноглобулинов, μ-цепь IgM содержит 7 перекрывающихся бета-листов, стабилизированных междоменными дисульфидными связями. Константный участок IgM по форме похож на шляпочный гриб, в котором домены Cμ2—Cμ3 образуют «шляпку», а домен Cμ4 формирует подобие «ножки»[25].

Функции

IgM — первые иммуноглобулины, которые начинают синтезироваться в плоде человека (примерно на 20-й неделе)[26]. Иммуноглобулины M могут взаимодействовать с компонентом C1 системы комплемента и активизировать классический путь системы комплемента, в результате чего происходит опсонизация антигенов и цитолиз. IgM взаимодействуют с молекулами полииммуноглобулинового рецептора (plgR), благодаря чему попадают на слизистые оболочки, такие как выстилку кишечника, а также в грудное молоко. В этом взаимодействии участвует J-цепь[27]. При трансплантации органов в организме реципиента вырабатываются IgM, направленные против пересаженного органа, однако они не участвуют в реакции отторжения трансплантанта и могут оказывать защитную роль[28]. При первичном столкновении с антигеном IgM образуются первыми, они появляются и при повторных столкновениях, но в меньших количествах. IgM не проходят через плаценту (через неё проходят только иммуноглобулины G). Наличие в плазме крови IgM против определённых возбудителей свидетельствует о ранних этапах инфекции, а в крови новорождённого — о внутриматочной инфекции (например, синдроме врождённой краснухи). В норме IgM часто присутствуют с плазме крови в связанном с определёнными антигенами виде, за что их иногда называют «натуральными антителами». Причиной этого явления может служить высокая авидность IgM, из-за чего они связывают антигены с низкой кросс-реактивностью, встречающиеся в плазме крови здорового человека[29].

Примечания

  1. Kabat E. A. THE MOLECULAR WEIGHT OF ANTIBODIES. (англ.) // The Journal Of Experimental Medicine. — 1939. — 1 January (vol. 69, no. 1). P. 103—118. doi:10.1084/jem.69.1.103. PMID 19870830.
  2. Галактионов, 2004, с. 65.
  3. Immunoglobulin M // The American Heritage Dictionary of the English Language (англ.). — Fourth. Houghton Mifflin Company, 2004. — ISBN 978-0618082308.
  4. Alberts, B.; Johnson, A.; Lewis, J.; Walter, P.; Raff, M.; Roberts, K. Chapter 24 // Molecular Biology of the Cell (англ.). — 4th. Routledge, 2002. — ISBN 978-0-8153-3288-6.
  5. Capolunghi F., Rosado M. M., Sinibaldi M., Aranburu A., Carsetti R. Why do we need IgM memory B cells? (англ.) // Immunology Letters. — 2013. — May (vol. 152, no. 2). P. 114—120. doi:10.1016/j.imlet.2013.04.007. PMID 23660557.
  6. Williams, N.; O'Connell, P. R. Chapter 62 // Bailey & Love's Short Practice of Surgery (англ.). — 25th. CRC Press, 2008. — P. 1102. — ISBN 9780340939321.
  7. Галактионов, 2004, с. 67.
  8. Heidelberger M., Pedersen K. O. THE MOLECULAR WEIGHT OF ANTIBODIES. (англ.) // The Journal Of Experimental Medicine. — 1937. — 28 February (vol. 65, no. 3). P. 393—414. doi:10.1084/jem.65.3.393. PMID 19870608.
  9. Waldenström Jan. Incipient myelomatosis or «essential« hyperglobulinemia with fibrinogenopenia - a new syndrome? (англ.) // Acta Medica Scandinavica. — 2009. — 24 April (vol. 117, no. 3—4). P. 216—247. ISSN 0001-6101. doi:10.1111/j.0954-6820.1944.tb03955.x.
  10. Potter M. The early history of plasma cell tumors in mice, 1954-1976. (англ.) // Advances In Cancer Research. — 2007. Vol. 98. P. 17—51. doi:10.1016/S0065-230X(06)98002-6. PMID 17433907.
  11. Галактионов, 2004, с. 65—66.
  12. Monica T. J., Williams S. B., Goochee C. F., Maiorella B. L. Characterization of the glycosylation of a human IgM produced by a human-mouse hybridoma. (англ.) // Glycobiology. — 1995. — March (vol. 5, no. 2). P. 175—185. doi:10.1093/glycob/5.2.175. PMID 7780192.
  13. Галактионов, 2004, с. 66—67.
  14. Frutiger S., Hughes G. J., Paquet N., Lüthy R., Jaton J. C. Disulfide bond assignment in human J chain and its covalent pairing with immunoglobulin M. (англ.) // Biochemistry. — 1992. — 22 December (vol. 31, no. 50). P. 12643—12647. doi:10.1021/bi00165a014. PMID 1472500.
  15. Parkhouse R. M., Askonas B. A., Dourmashkin R. R. Electron microscopic studies of mouse immunoglobulin M; structure and reconstitution following reduction. (англ.) // Immunology. — 1970. — April (vol. 18, no. 4). P. 575—584. PMID 5421036.
  16. Schwager J., Hadji-Azimi I. Mitogen-induced B-cell differentiation in Xenopus laevis. (англ.) // Differentiation; Research In Biological Diversity. — 1984. Vol. 27, no. 3. P. 182—188. doi:10.1111/j.1432-0436.1984.tb01426.x. PMID 6334001.
  17. Fillatreau S., Six A., Magadan S., Castro R., Sunyer J. O., Boudinot P. The astonishing diversity of Ig classes and B cell repertoires in teleost fish. (англ.) // Frontiers In Immunology. — 2013. Vol. 4. P. 28—28. doi:10.3389/fimmu.2013.00028. PMID 23408183.
  18. Getahun A., Lundqvist M., Middleton D., Warr G., Pilström L. Influence of the mu-chain C-terminal sequence on polymerization of immunoglobulin M. (англ.) // Immunology. — 1999. — July (vol. 97, no. 3). P. 408—413. doi:10.1046/j.1365-2567.1999.00797.x. PMID 10447761.
  19. Dolder F. Occurrence, isolation and interchain bridges of natural 7-S immunoglobulin M in human serum. (англ.) // Biochimica Et Biophysica Acta. — 1971. — 29 June (vol. 236, no. 3). P. 675—685. PMID 4997811.
  20. Eskeland T., Christensen T. B. IgM molecules with and without J chain in serum and after purification, studied by ultracentrifugation, electrophoresis, and electron microscopy. (англ.) // Scandinavian Journal Of Immunology. — 1975. Vol. 4, no. 3. P. 217—228. doi:10.1111/j.1365-3083.1975.tb02620.x. PMID 807966.
  21. Cattaneo A., Neuberger M. S. Polymeric immunoglobulin M is secreted by transfectants of non-lymphoid cells in the absence of immunoglobulin J chain. (англ.) // The EMBO Journal. — 1987. — September (vol. 6, no. 9). P. 2753—2758. PMID 3119328.
  22. Davis A. C., Roux K. H., Shulman M. J. On the structure of polymeric IgM. (англ.) // European Journal Of Immunology. — 1988. — July (vol. 18, no. 7). P. 1001—1008. doi:10.1002/eji.1830180705. PMID 3136022.
  23. Davis A. C., Roux K. H., Pursey J., Shulman M. J. Intermolecular disulfide bonding in IgM: effects of replacing cysteine residues in the mu heavy chain. (англ.) // The EMBO Journal. — 1989. — September (vol. 8, no. 9). P. 2519—2526. PMID 2511005.
  24. Collins C., Tsui F. W., Shulman M. J. Differential activation of human and guinea pig complement by pentameric and hexameric IgM. (англ.) // European Journal Of Immunology. — 2002. — June (vol. 32, no. 6). P. 1802—1810. doi:10.1002/1521-4141(200206)32:6<1802::AID-IMMU1802>3.0.CO;2-C. PMID 12115664.
  25. Müller R., Gräwert M. A., Kern T., Madl T., Peschek J., Sattler M., Groll M., Buchner J. High-resolution structures of the IgM Fc domains reveal principles of its hexamer formation. (англ.) // Proceedings Of The National Academy Of Sciences Of The United States Of America. — 2013. — 18 June (vol. 110, no. 25). P. 10183—10188. doi:10.1073/pnas.1300547110. PMID 23733956.
  26. van Furth R., Schuit H. R., Hijmans W. The immunological development of the human fetus. (англ.) // The Journal Of Experimental Medicine. — 1965. — 1 December (vol. 122, no. 6). P. 1173—1188. doi:10.1084/jem.122.6.1173. PMID 4159036.
  27. Johansen F. E., Braathen R., Brandtzaeg P. Role of J chain in secretory immunoglobulin formation. (англ.) // Scandinavian Journal Of Immunology. — 2000. — September (vol. 52, no. 3). P. 240—248. doi:10.1046/j.1365-3083.2000.00790.x. PMID 10972899.
  28. McAlister C. C., Gao Z. H., McAlister V. C., Gupta R., Wright Jr. J. R., MacDonald A. S., Peltekian K. Protective anti-donor IgM production after crossmatch positive liver-kidney transplantation. (англ.) // Liver Transplantation : Official Publication Of The American Association For The Study Of Liver Diseases And The International Liver Transplantation Society. — 2004. — February (vol. 10, no. 2). P. 315—319. doi:10.1002/lt.20062. PMID 14762873.
  29. Jayasekera J. P., Moseman E. A., Carroll M. C. Natural antibody and complement mediate neutralization of influenza virus in the absence of prior immunity. (англ.) // Journal Of Virology. — 2007. — April (vol. 81, no. 7). P. 3487—3494. doi:10.1128/JVI.02128-06. PMID 17202212.

Литература

  • Галактионов В. Г . Иммунология. М.: Издат. центр «Академия», 2004. — 528 с. — ISBN 5-7695-1260-1.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.