Дзета-функция Дедекинда
Дзета-функция Дедекинда — это дзета-функция алгебраического числового поля , являющаяся обобщением дзета-функции Римана.
Определение и основные свойства
Пусть — алгебраическое числовое поле, — комплексное число, тогда
где пробегает все ненулевые идеалы кольца целых поля , — абсолютная норма идеала (которая равна индексу ). Этот ряд сходится абсолютно для всех с действительной частью .
В общем случае дзета-функция Дедекинда определяется как
где пробегает все целые дивизоры поля , а обозначает норму дивизора .
Свойства
- Если — поле рациональных чисел, то - дзета-функции Римана.
Эйлерово произведение
Дзета-функция Дедекинда разлагается в эйлерово произведение по всем простым идеалам кольца
при .
Эта формула выражает единственность разложения идеала в произведение простых идеалов в дедекиндовом кольце . При это произведение ненулевых множителей абсолютно сходится к , откуда следует, что в этой области .
Аналитическое продолжение
имеет аналитическое продолжение на всю комплексную плоскость, которое является мероморфной функцией, имеющей простой полюс в точке .
Функциональное уравнение
Как и дзета-функция Римана, дзета-функция Дедекинда удовлетворяет некоторому функциональному уравнению, связывающему значения и . Конкретно, пусть — дискриминант поля , — число действительных вложений, а — число пар комплексно-сопряжённых вложений поля в . Обозначим
где — гамма-функция. Тогда функция
удовлетворяет функциональному уравнению
Связь с характеристиками поля
Как и дзета-функция Римана, значения дзета-функции Дедекинда заключают в себе (хотя бы гипотетически) важную арифметическую информацию о .
Например, точка — простой полюс , и для поля алгебраических чисел степени ( определены выше) вычет в этой точке равен
где — число классов дивизоров, — дискриминант поля, - регулятор поля , а — число содержащихся в корней из 1 (порядок подгруппы кручения ). Вычет в этой точке дает аналитическую формулу для числа классов.
Другой пример — нуль , порядок которого равен рангу группы единиц кольца . Предел в этой точке равен
Это следует из функционального уравнения и соотношения .
Из функционального уравнения и того, что для всех натуральных получаем, что . для всех , кроме случая, когда полностью действительно (т.е. когда , т.е. когда или ). В полностью действительном случае, Зигель показал, что - ненулевое рациональное число для отрицательных нечетных . Стивен Лихтенбаум предложил гипотезу о выражении специальных значений для этих рациональных чисел в терминах алгебраической K-теории поля .
Связь с дзета- и L-функциями
В случае, когда — абелево расширение , его дзета-функция Дедекинда может быть представлена в виде произведений L-функций Дирихле. К примеру, если — квадратичное поле, то это означает, что
где — это символ Якоби, используемый как характер Дирихле. Это соотношение является аналитической переформулировкой квадратичного закона взаимности Гаусса.
В общем случае, если — расширение Галуа поля с группой Галуа , то его дзета-функция Дедекинда является L-функцией Артина регулярного представления , а значит разлагается в произведение L-функций Артина неприводимых представлений Артина .
Связь с L-функциями Артина показывает, что если — расширение Галуа, то является голоморфной ( "делит" ). В случае произвольного расширения аналогичное утверждение следует из гипотезу Артина для L-функций
Кроме того, является дзета-функцией Хассе-Вейля для и мотивной L-функцией мотива, приходящего из когомологии .
Расширенная гипотеза Римана
Расширенная гипотеза Римана (РГР) утверждает, что для любого алгебраического числового поля если — комплексный корень уравнения , лежащий в так называемой критической полосе , то его действительная часть .
Обычная гипотеза Римана получается из расширенной для .
Из РГР следует эффективная версия[6] теоремы Чеботарёва о плотности: если - конечное расширение Галуа с группой Галуа , и - множество сопряженных классов , число неразветвленных простых чисел в с нормой, не превосходящей с классом сопряженности Фробениуса в растет как
причем константа в абсолютна, - степень расширения над , а - дискриминант.
Литература
- Дж.Бернштайн, Ст.Гелбарт. Введение в программу Ленглендса. — Москва - Ижевск, 2008.
- З.И.Боревич, И.Р.Шафаревич. Теория чисел. — М.:Наука. Главная редакция физико-математической литературы, 1985.
- Дж.Касселс, А.Фрёлих. Алгебраическая теория чисел. — М.:Мир, 1969.