Группа классов идеалов
Группа классов идеалов дедекиндова кольца — это, грубо говоря, группа, позволяющая сказать, насколько сильно в данном кольце нарушается свойство факториальности. Эта группа тривиальна тогда и только тогда, когда дедекиндово кольцо является факториальным. Свойства дедекиндова кольца, касающиеся умножения его элементов, тесно связаны с устройством этой группы.
Определение
Пусть R — целостное кольцо, определим отношение на его ненулевых дробных идеалах следующим образом: тогда и только тогда, когда существуют ненулевые элементы a и b кольца R, такие что , легко показать, что это задаёт отношение эквивалентности. Классы эквивалентности по этому отношению называются классами идеалов. Умножение классов, определенное как [a]*[b] = [ab] корректно определено, ассоциативно и коммутативно; главные дробные идеалы образуют класс [R], являющийся единицей для этого умножения. Класс [I] имеет обратный к нему класс [J] тогда и только тогда, когда идеал IJ главный. В общем случае такой J может не существовать и классы идеалов будут всего лишь коммутативным моноидом.
Если R к тому же является дедекиндовым кольцом (например, кольцом алгебраических чисел некоторого алгебраического числового поля), то у каждого дробного идеала I существует обратный J, такой что IJ = R = (1). Следовательно, классы дробных идеалов дедекиндова кольца с определенным выше умножением образуют абелеву группу, группу классов идеалов кольца R.
Свойства
- Группа классов идеалов тривиальна тогда и только тогда, когда все идеалы кольца R главные, то есть когда R является областью главных идеалов. При этом дедекиндово кольцо факториально тогда и только тогда, когда оно является областью главных идеалов.
- Число классов идеалов кольцо R в общем случае может быть бесконечным; более того, любая абелева группа изоморфна группе классов некоторого дедекиндова кольца[1]. Однако если R — кольцо целых числового поля, его число классов конечно.
- Вычисление группы классов в общем случае является довольно трудным. Это можно сделать вручную для алгебраического числового поля с малым дискриминантом, используя границу Минковского. Для полей с большим дискриминантом вычисление вручную становится непрактичным, и его обычно проводят при помощи компьютера.
Примеры
Число классов квадратичного поля
Если d — число, свободное от квадратов, то является квадратичным полем. Если d < 0, группа классов тривиальна только для следующих значений: Что касается случая d > 0, до сегодняшнего дня остаётся открытой проблемой вопрос о том, бесконечно ли число значений, которым соответствует тривиальная группа классов.
Пример нетривиальной группы классов
— кольцо целых числового поля Это кольцо не является факториальным; действительно, идеал
не является главным. Это можно доказать от противного следующим образом. На можно определить функцию нормы , причем и тогда и только тогда, когда x обратим. Прежде всего, . Факторкольцо по идеалу изоморфно , поэтому . Если J порожден элементом x, то x делит 2 и 1 + √−5. Следовательно, норма x делит 4 и 6, то есть равна 1 или 2. Она не может быть равна 1, так как J не равен R, и не может быть равна 2, так как не может иметь остаток 2 по модулю 5. Легко проверить что — главный идеал, поэтому порядок J в группе классов равен 2. Однако проверка того, что все идеалы принадлежат одному из этих двух классов, требует чуть больших усилий.
Примечания
Литература
- Атья М., Макдональд И. Введение в коммутативную алгебру. — М: Мир, 1972
- Claborn, Luther (1966), Every abelian group is a class group, Pacific Journal of Mathematics Т. 18: 219–222, <http://projecteuclid.org/DPubS?verb=Display&version=1.0&service=UI&handle=euclid.pjm/1102994263&page=record>
- Fröhlich, Albrecht & Taylor, Martin (1993), Algebraic number theory, vol. 27, Cambridge Studies in Advanced Mathematics, Cambridge University Press, ISBN 978-0-521-43834-6