h-кобордизм
h-кобордизм — бордизм , где — компактное дифференцируемое многообразие, край которого — объединение непересекающихся замкнутых многообразий и , являющихся деформационными ретрактами . Простейший пример — тривиальный -кобордизм
Многообразия и называются -кобордантными, если существует -кобордизм соединяющий их.
Теорема об -кобордизме даёт условия на то, когда -кобордизм является тривиальным. Теорему первым доказал Стивен Смейл, который получил премию Филдса за результаты связанные с этой теоремой. С помощью теоремы он доказал обобщенную гипотезу Пуанкаре для размерностей .
Свойства
- (Теорема об -кобордизме) Если — -кобордизм, а и — односвязные гладкие (или кусочно линейные) многообразия и , то диффеоморфно (кусочно линейно изоморфно) тривиальному -кобордизму.
- В частности, диффеоморфно .
Вариации и обобщения
- Если убрать условие односвязности кобордантных многообразий и , то препятствием к тривиальности кобордизма между ними является кручение Уайтхеда[1]. Теорема об -кобордизме гласит, что кобордизм между двумя многообразиями является тривиальным тогда и только тогда, когда кручение Уайтхеда обнуляется.
Примечания
- Whitehead torsion (англ.) // Wikipedia. — 2020-04-28.
Литература
- Милнор, Дж., Теорема об -кобордизме, М., 1969;
- Smale S., Generalized Poincare's Conjecture in Dimensions Greater Than Four , The Ann. of Math., 2nd Ser., Vol 74, No. 2. (Sep ., 1961), pp. 391-406.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.