Формула Карди

Формула Карди — формула для предельной вероятности пробоя в двумерной задаче перколяции. Предсказанная в начале 1990-х годов Джоном Карди на основании рассуждений конформной теории поля, она утверждает, что предельная вероятность пробоя между дугами и границы односвязной области в задаче критической перколяции равна

где  — гипергеометрическая функция, а  — двойное отношение

четырёх образов точек при конформном отображении области в верхнюю полуплоскость. [1][2][3]

Формула Карди в переформулировке Карлесона: .

Эта формула была переформулирована Леннартом Карлесоном[4] в следующем виде: если отображение, конформно переводящее область в правильный треугольник со стороной 1, а точки , и в вершины этого треугольника, переводит точку в находящуюся на расстоянии от вершины-образа точки , то искомая вероятность равна[5][2] .

Для случая треугольной решётки эта формула была строго доказана в начале 2000-х годов Станиславом Смирновым с использованием техники дискретно-гармонических функций.[5][2][6]

Формула

Исторические предпосылки

Вопрос о вероятности пробоя, для конкретной (трёхмерной) модели (упакованные в ящике заданного размера чёрные и белые шары) задавался ещё в 1894 году, в журнале American Mathematical Monthly. Де Вольсон Вуд предложил[7] следующую задачу:

An equal number of white and black balls of equal size are thrown into a

rectangular box, what is the probability that there will be contiguous contact of white balls from one end of the box to the opposite end ? As a special example, suppose there are 30 balls in the length of the box, 10 in the width and 5 (or 10)

layers deep

Стоит отметить, что опубликованное в этом номере решение П. Х. Филбрика было приближённым (в нём предполагалось, что наиболее вероятно существование пробоя по прямой); там же, редакторы предлагали опубликовать точное решение, если кто-нибудь его найдёт. Как мы теперь знаем, сделанное в приближённом решении предположение было далеко от истины.[4]

В 1957 году Бродбент и Хаммерсли заложили основы математической теории перколяции в своей работе[8], исходной точкой для которой послужило исследование просачивания газов сквозь угольный фильтр противогаза[9].

В начале 1990-х появляется работа Ленглендса и др.[10][11], в которой исследуются различные вероятности пробоя в прямоугольной области для шести различных моделей, и обнаруживается, что (в пределах точности численных экспериментов) эти функции для различных моделей совпадают. Кроме того, Айзенман высказывает[12][13] гипотезу о конформной инвариантности вероятности пробоя.

Почти сразу после этого, Карди предлагает свою формулу для вероятности пробоя.[1]

Постановка задачи

Формулой Карди задаётся ответ в задаче о пробое. А именно, рассматривается односвязная область на плоскости, с четырьмя отмеченными точками на границе. При каждом , эта область аппроксимируется решёткой с шагом (или масштабом)  — в зависимости от задачи, квадратной, треугольной, или более сложной; так получается граф с отмеченными точками .

Для каждого , находится вероятность пробоя в этом графе. А именно, вершины графа независимо, каждая с вероятностью 1/2, объявляются «открытыми» или «закрытыми», и искомая вероятность это вероятность наличия пути от дуги к дуге , идущего только по открытым вершинам.

Наконец, искомая вероятность пробоя определяется как предел «дискретизованных» вероятностей при , стремящемся к нулю:

Ответ Карди

Предложенный Карди (с использованием конформной теории поля) ответ для вероятности пробоя был следующим:

  • Вероятность пробоя конформно-инвариантна, то есть если между областями и есть конформное отображение , переводящее точки на границе в точки на границе , то

Тем самым, достаточно задавать вероятность пробоя лишь для какой-нибудь одной односвязной области, причём три из четырёх точек могут быть зафиксированы.

  • В верхней полуплоскости для точек вероятность пробоя выражается через гипергеометрическую функцию как[2]

Это представление может быть переписано как интеграл

Переформулировка Карлесона

Вскоре после появления формулы Карди, Леннарт Карлесон заметил[4], что интеграл, стоящий в правой части интегрального представления, задаёт (как функция на верхней полуплоскости) конформное отображение верхней полуплоскости на правильный треугольник. Поэтому, формулу Карди можно упростить, рассмотрев в качестве области правильный треугольник, у которого три из четырёх отмеченных точек находятся в вершинах. В этом случае, вероятность пробоя оказывается равна просто отношению того из отрезков , который не является стороной треугольника, к стороне треугольника.

Доказательство для случая треугольной решётки

Формула Карди для случая треугольной решётки была доказана Смирновым с использованием техники дискретного комплексного анализа. Одним из шагов его доказательства явилось продолжение вероятности пробоя до функции на внутренности области. А именно, для дискретизованной области с тремя отмеченными точками на границе, рассматривается функция на этой области, задающая вероятность наличия открытого пути от дуги до дуги границы, отделяющего от дуги точку . Вероятность пробоя задаётся значением этой функции в граничной точке .

Оказывается, что как для суммы трёх таких функций,

так и для их линейной комбинации

дискретно-антиголоморфный дифференциал оказывается малым (и стремящимся к нулю с уменьшением шага ). Отсюда следует голоморфность предельных функций и . Наконец, функция голоморфна и принимает только вещественные значения; тем самым, она оказывается постоянной и, в силу граничных значений, тождественно равной единице.

Анализ функции s показывает, что она конформно отображает область в правильный треугольник, переводя точки A, B и C в точки ; формула Карди после этого восстанавливается, исходя из исследования поведения функций на границе.

Примечания

  1. Cardy, 1992.
  2. Smirnov, 2006.
  3. Sheffield, S. and Wilson, D. B. Schramm’s proof of Watts’ formula (англ.). Дата обращения: 11 сентября 2011. Архивировано 25 августа 2012 года.
  4. Смирнов С. К. Выступление на Всероссийском съезде учителей математики в МГУ. Дата обращения: 19 августа 2011. Архивировано 25 августа 2012 года.
  5. Smirnov, 2001, p. 241.
  6. Beffara V. Cardy’s formula on the triangular lattice, the easy way (недоступная ссылка). Дата обращения: 17 августа 2011. Архивировано 31 августа 2012 года.
  7. Wood D. V., Philbrick P. H. Solutions to problems: 5 // American Mathematical Monthly. — 1894. Т. 1, № 6. С. 211-212.
  8. Broadbent S.R., Hammersley J.H. Percolation processes, I. Crystals and mazes (англ.) // Proc. Camb. Phil. Soc.. — 1957. — Vol. 53. — P. 629—641.
  9. Эфрос, 1982, с. 1—2.
  10. Langlands R. P. , Pichet C., Pouliot Ph., Saint-Aubin Y. On the universality of crossing probabilities in two-dimensional percolation // Journal of Statistical Physics. — Vol. 67. — P. 553-574. doi:10.1007/BF01049720.
  11. Langlands R. P., Pichet C., Pouliot Ph., Saint-Aubin Y. On the Universality of Crossing Probabilities in Two-Dimensional Percolation // Preprint CRM-1785. — October 1991.
  12. Langlands R., Pouliot Ph., Saint-Aubin Y. Conformal invariance in two-dimensional percolation // Bull. Amer. Math. Soc. (N.S.). — Vol. 30. — P. 1–61.
  13. Smirnov, 2001, p. 239.

Ссылки

Литература

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.