Физика колебаний и волн

Физика колебаний и волн — раздел общей физики, изучающий физические явления, характеризующиеся циклическим изменением физических величин во времени и в пространстве. Это — одна большая часть школьного курса физики, изучается после электромагнетизма ( рассматривая механические и электромагнитные процессы вместе ) или сразу с механикой ( в связи с тем, что теория колебаний и волн развивается на основе кинематики и динамики, что охватывает механика ). [1][2]

Циклические процессы

В колебательных и волновых процессах численные значения физических величин циклически изменяются. Для упрощения анализа физических явлений в пространственных и временных координатах можно рассматривать проекции. Если зафиксировать какой-либо момент времени, волновой характер проявляется в определённом распределении характеризующей величины в пространстве, в котором наблюдаемо чередование максимумов и минимумов физической величины. Если, напротив, зафиксировать пространственные координаты, локально наблюдаемая физическая величина совершает колебания.

Волновой циклический процесс состоит из циклов, которые повторяются в пространстве и времени. Колебания — это циклический процесс, в котором циклы повторяются во времени. Например, проекция точки, которая движется по единичной окружности, совершает колебания на отрезке [-1,1]. Соответствие между этими двумя циклическими процессами ( движением по окружности и движением проекции ) используют для графического отображения колебаний. Отображение колебаний с помощью вращающегося вектора амплитуды называется методом векторных диаграмм.[3]

Колебания

Колебаниями называются процессы, которые повторяются ( во времени ), так, что то в одну сторону, то в противоположную сторону меняется физическая величина, характеризующая явление.[1][3] В зависимости от физической природы процесса, различают:

  • Механические колебания:
    • Колебания пружины, колебания струны ( и мембраны ), колебания маятника.
    • Колебания поршня в цилиндре двигателя внутреннего сгорания, колебания Земной коры во время землетрясений.
    • Колебания давления воздуха во время распространения звука, волнение моря и качка корабля.
  • Электромагнитные колебания: колебания в цепи переменного тока, колебания поля.
  • Электромеханические колебания: колебания мембраны телефона, колебания диффузора электродинамического громкоговорителя. [3]

Колебания механической природы и электромагнитной природы подчиняются одинаковым количественным законам. Раздел физики, в котором колебания различной природы рассматривают с одной точки зрения, называется физикой колебаний. [1]

Система, совершающая колебания, называется колебательной системой.[3] Основные свойства колебательных систем:

  • У любой колебательной системы есть устойчивое состояние равновесия.
  • Как только колебательная система оказывается выведенной из устойчивого состояния равновесия, появляется сила, возвращающая систему в устойчивое состояние.
  • Вернувшись в устойчивое состояние, колеблющееся тело по инерции продолжает движение.[2]

Если колебательная система в начальный момент времени находится в устойчивом состоянии равновесия, колебания не происходят пока на систему не подействует внешняя сила. Если колебательная система выведена из этого состояния, перечисленные свойства приводят к тому, что в системе происходят колебания, которые какое-то время продолжаются.

Колебания, которые происходят без переменных внешних воздействий на колебательную систему, называются свободными колебаниями. В противном случае — колебания называются вынужденными колебаниями. [3]

Колебания называются периодическими, если численные значения всех физических величин, характеризующих колебательную систему и меняющихся в процессе колебаний, повторяются через равные промежутки времени. Периодические колебания величины называются гармоническими колебаниями, если или . Начальные фазы в аргументах этих тригонометрических функций связаны соотношением . [3]

Можно доказать, что величина ( ) совершает гармонические колебания ( с циклической частотой ) тогда и только тогда, если она удовлетворяет уравнению . Поэтому это уравнение называется дифференциальным уравнением гармонических колебаний. [3]

Когда система одновременно участвует в разных колебательных процессах, получение закона результирующих колебаний системы называется сложением колебаний. Гармонические колебания двух колебательных процессов называются когерентными, если разность их фаз не зависит от времени. В сложении некогерентных колебаний получаются негармонические результирующие колебания. Для сложения двух одинаково направленных гармонических колебаний можно использовать метод векторных диаграмм. [3]

При сложении одинаково направленных гармонических колебаний с циклическими частотами и т. д. получаются периодические негармонические колебания с периодом . Любое гармоническое колебание можно представить в виде суммы гармонических колебаний с такими частотами: , где

,

[4]

Такое представление периодической функции называется её разложением в ряд Фурье. Члены ряда Фурье, соответствующие колебаниям с циклическими частотами и т. д. называются первой, второй, третьей и т. д. гармониками сложного периодического колебания. Совокупность этих гармоник образует спектр колебания. Периодические колебания имеют дискретный спектр частот. [3]

Непериодические колебания в общем случае имеют сплошной спектр частот. В гармоническом анализе эти сложные колебания представляются в виде интеграла Фурье. [3]

Некоторые непериодические колебания ( они называются почти периодическими, квазипериодическими ) имеют дискретный спектр частот. Но эти циклические частоты выражаются иррациональными числами. [3]

Волны

Различают 2 вида волн: упругие волны и электромагнитные волны.

Упругими волнами называются механические возмущения ( деформации ), которые распространяются в упругой среде. Тело называется упругим, если его деформации, которые появляются под влиянием внешних воздействий, полностью исчезают после прекращения этих воздействий.

Упругие волны в неограниченной среде распространяются, в результате вовлечения в вынужденные колебания всё более и более удалённых от источника волн частей среды. За колеблющиеся частицы сплошной среды, в которой распространяются упругие волны, принимают небольшие элементы объёма.

Упругая волна называется продольной, если частицы среды колеблются в направление распространения волны. Пример — звуковые волны в воздухе ( это — упругие волны малой интенсивности ).

Упругая волна называется поперечной, если частицы среды колеблются перпендикулярно направлению распространения волны. Пример — волны, которые распространяются вдоль струн музыкальных инструментов.

Особое место занимают поверхностные волны. Имеются в виду волны на поверхности жидкости ( возмущения поверхности жидкости ). В поверхностных волнах частицы жидкости одновременно совершают и продольные, и поперечные колебания. [3]

Бегущая волна

Бегущей волной называется волна, которая, в отличие от стоячей волны, переносит энергию в пространстве. Уравнением бегущей волны называется зависимость величин, характеризующих колебания среды в распространении волны, от координат и времени.

Упругая волна называется синусоидальной, или гармонической, если соответствующие ей колебания частиц среды являются гармоническими. Частота этих колебаний называется частотой волны.

Волновой поверхностью, или волновым фронтом, называется геометрическое место точек с одинаковой фазой колебаний. Волна называется плоской, если её поверхности представляют собой совокупность параллельных плоскостей. Волна называется сферической, если её поверхности представляют собой концентрические сферы; центр этих сфер называется центром волны.

Уравнение плоской синусоидальной волны: kr, где есть

kволновой вектор,

rрадиус-вектор,

– начальная фаза колебаний в


Уравнение сферической синусоидальной волны: , где – это физическая величина, численно равная амплитуде волны на единичном расстоянии от центра волны.

Распространение волны в однородной изотропной среде описывается следующим дифференциальным уравнением в частных производных: , где – это оператор Лапласа и – скорость распространения волны. Плоская и сферическая волна удовлетворяют этому уравнению. Функция , которая характеризует синусоидальную волну с волновым числом , распространяющуюся в однородной изотропной среде, одновременно удовлетворяет двум уравнениям: и . [3]

Ссылки

Ссылки: использованная литература, список – в разделе "Примечания".
См. также на других языках: https://lv.wikipedia.org/wiki/Svārstību_un_viļņu_fizika

Примечания

  1. G. Mjakiševs, B. Buhovcevs. Fizika 11. klasei. 303 с.
  2. Н. М. Шахмаев, С. Н. Шахмаев, Д. Ш. Шодиев. Физика 9. Москва, «Просвещение», 1994. 239 с.
  3. Б. М. Яворский, А. А. Детлаф. Справочник по физике. 512 с.
  4. А. А. Детлаф, Б. М. Яворский. Курс физики. Москва, "Высшая школа", 1989. 607 с.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.