Тистлетвэйт, Морвен Б.

Морвен Б. Тистлетвэйт — это теоретик в области теории узлов и профессор математики университета Теннесси в Ноксвилле. Он внёс большой вклад в теорию узлов и теорию группы кубика Рубика.

Морвен Тистлетвэйт

Дата рождения XX век
Страна Британия
Научная сфера Математика
Место работы Университет Теннесси
Альма-матер Манчестерский университет
Лондонский университет
Кембриджский университет
Научный руководитель Майкл Джордж Барат

Биография

Морвен Тистлетвэйт получил степень бакалавра искусств в Кембриджском университете в 1967, магистра в Лондонском университете в 1968 и PhD (доктора философии) в Манчестерском университете в 1972, где его научным руководителем был Майкл Барат. Он учился игре на фортепиано с Таней Полуниной, Джеймсом Гиббом и Балинтом Вазонием и давал концерты в Лондоне, прежде чем решил посвятить себя карьере математика в 1975. Он учился в Лондонском северном политехническом университете с 1975 по 1978 и в Политехническом южнобережном университете (Лондон) с 1978 по 1987. Он работал в качестве внештатного профессора в Калифорнийском университета в Санта-Барбаре около года, прежде чем перешёл в Университет в Теннесси, в котором он по настоящее время является профессором. Сын Тистлетвэйта также математик.[1]

Работа

Гипотезы Тэйта

Морвен Тистлетвэйт помог доказать гипотезы Тэйта

  1. Приведённые альтернированные диаграммы имеют минимальное число пересечений.
  2. Любые две приведенные альтернированные диаграммы заданного узла имеют одинаковое число закрученности.
  3. Если даны любые две приведенные альтернированные диаграммы D1 и D2 ориентированного простого альтернированного зацепления D1 может быть преобразована в D2 путём последовательности простых движений, называемых переворачиваниями. Гипотеза известна как «гипотеза Тэйта о переворачиваниях».
    (адаптирован из MathWorld—A Wolfram Web Resource. http://mathworld.wolfram.com/TaitsKnotConjectures.html)[2]

Морвен Тистлетвэйт вместе с Луисом Кауфманом и К. Мурасуги доказал первые две гипотезы Тэйта в 1987. Тистлетвэйт и Уильям Менаско доказали гипотезу Тэйта о переворачиваниях в 1991.

Алгоритм Тистлетвэйта

Тистлетвэйт знаменит также благодаря его алгоритму сборки кубика Рубика. Алгоритм разбивает состояния кубика Рубика на группы, которые можно получить с помощью определённых ходов. Вот эти группы:

  • G0 = <L,R,F,B,U,D>
Эта группа содержит все позиции кубика Рубика.
  • G1 = <L,R,F,B,U2,D2>
Эта группа содержит все позиции, которые могут быть достигнуты (с собранного состояния) с помощью вращения на одну четвёртую левой, правой, передней и задней сторон кубика Рубика, но только вращений на пол-оборота верхней и нижней сторон.
  • G2 = <L,R,F2,B2,U2,D2>
В этой группе состояния ограничены теми, которые можно получить вращением на пол-оборота передней, задней верхней и нижней сторон кубика и на одну четверть левой и правой граней.
  • G3 = <L2,R2,F2,B2,U2,D2>
Состояния этой группы могут быть получены только вращением в пол-оборота всех граней.
  • G4 = {I}
Финальная группа содержит только одно состояние — собранный кубик.

Кубик собирается путём движения от группы к группе с помощью ходов, разрешённых для данной группы. Например, перемешанный кубик, скорее всего, находится в состоянии G0. Просматривается таблица возможных перестановок, которые используют вращения на одну четверть, чтобы перевести кубик в группу G1. Теперь вращения на одну четверть верхней и нижней грани запрещаются в последовательностях в таблице и используются вращения из таблицы для получения состояния G2. И так далее, пока кубик не будет собран.[3]

Нотация Даукера

Тистлетвэйт вместе с Даукером разработали нотацию Даукера, обозначение узлов, пригодное для использования в компьютерах и являющееся производным от нотаций Тэйта и Гаусса.

См. также

Примечания

  1. Oliver Thistlethwaite
  2. Weisstein, Eric W. Tait's Knot Conjectures (англ.) на сайте Wolfram MathWorld.
  3. Thistlethwaite's 52-move algorithm

Литература

Ссылки

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.