Термохимия

Термохи́мия — раздел химической термодинамики, в задачу которого входит определение и изучение тепловых эффектов реакций, а также установление их взаимосвязей с различными физико-химическими параметрами. Ещё одной из задач термохимии является измерение теплоёмкостей веществ и установление их теплот фазовых переходов.

Основные понятия и законы термохимии

Термохимические уравнения

Термохимические уравнения реакций - это уравнения, в которых около символов химических соединений указываются агрегатные состояния этих соединений или кристаллографическая модификация и в правой части уравнения указываются численные значения тепловых эффектов

Важнейшей величиной в термохимии является стандартная теплота образования (стандартная энтальпия образования). Стандартной теплотой (энтальпией) образования сложного вещества называется тепловой эффект (изменение стандартной энтальпии) реакции образования одного моля этого вещества из простых веществ в стандартном состоянии. Стандартная энтальпия образования простых веществ в этом случае принята равной нулю.

В термохимических уравнениях необходимо указывать агрегатные состояния веществ с помощью буквенных индексов, а тепловой эффект реакции (ΔН) записывать отдельно, через запятую. Например, термохимическое уравнение

4NH3(г) + 3O2(г) → 2N2(г) + 6H2O(ж), ΔН=-1531 кДж

показывает, что данная химическая реакция сопровождается выделением 1531 кДж теплоты, при давлении 101 кПа, и относится к тому числу молей каждого из веществ, которое соответствует стехиометрическому коэффициенту в уравнении реакции. В термохимии также используют уравнения, в которых тепловой эффект относят к одному молю образовавшегося вещества, применяя в случае необходимости дробные коэффициенты.

Тепловой эффект химической реакции равен разности между суммарной энтальпией образования всех продуктов реакции и всех исходных веществ, с учетом стехиометрических коэффициентов (количества молей прореагировавших веществ). То есть, тепловой эффект химической реакции рассчитывается по общему выражению:

ΔH=(∑ΔHпродуктов)-(∑ΔHреагентов)

Таким образом, чем устойчивее продукты реакции и чем выше внутренняя энергия исходных соединений, тем выше тепловой эффект реакции, что является прямым следствием из закона минимума энергии и максимума энтропии. Для расчетов тепловых эффектов реакций в стандартных условиях используют стандартные энтальпии образования соединений, взятые из справочных таблиц.

Закон Гесса

В основе термохимических расчётов лежит закон Гесса: Тепловой эффект (∆Н) химической реакции (при постоянных Р и Т) зависит от природы и физического состояния исходных веществ (реагентов) и продуктов реакции и не зависит от направления её протекания.

Следствия из закона Гесса:

  1. Тепловые эффекты прямой и обратной реакций равны по величине и противоположны по знаку.
  2. Тепловой эффект химической реакции (∆Н) равен разности между суммой энтальпий образования продуктов реакции и суммой энтальпий образования исходных веществ, взятых с учётом коэффициентов в уравнении реакции (то есть помноженные на них).
  3. С термохимическими уравнениями (если термические эффекты приведены для одних и тех же условий) можно оперировать точно так же, как с обычными алгебраическими уравнениями[1]: в уравнениях реакций можно переносить члены из одной части в другую, сокращать формулы химических соединений, уравнения можно складывать, вычитать одно из другого, умножать на постоянные коэффициенты и т. д.[2], не забывая о том, что складываемые, вычитаемые или сокращаемые вещества должны находиться в одинаковом агрегатном состоянии[3].

Закон Гесса может быть записан в виде следующего математического выражения:

.

С помощью закона Гесса можно рассчитать энтальпии образования веществ и тепловые эффекты реакций, которые невозможно измерить экспериментально.

Закон Кирхгофа

Закон Кирхгофа устанавливает зависимость теплового эффекта химической реакции от температуры: температурный коэффициент теплового эффекта химической реакции равен изменению теплоёмкости системы в ходе реакции. Закон Кирхгофа лежит в основе расчёта тепловых эффектов при разных температурах.

Методы термохимии

Основными экспериментальными методами термохимии являются калориметрия, дифференциальный термический анализ, дериватография.

См. также

Примечания

Литература

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.