Теорема Рунге

Теорема Рунге (также аппроксимационная теорема Рунге) в комплексном анализе — утверждение о возможности равномерного приближения голоморфной функции многочленами. Сформулирована Карлом Рунге в 1885 году.

Формулировка

Если  — компактное пространство,  — множество, содержащее хотя бы по одной точке из каждой ограниченной связной компоненты множества и голоморфная в окрестности , то существует последовательность полиномиальных функций с полюсами во множестве , приближающая функцию равномерно.

Обобщения

Всякая голоморфная в произвольной области функция может быть равномерно приближена последовательностью рациональных функций с полюсами вне , это утверждение также фигурирует как теорема Рунге.

Ещё более общий результат — теорема Мергеляна, утверждающая о необходимости и достаточности для равномерного приближения многочленами функции, голоморфной внутри компакта и непрерывной на нём, голоморфного продолжения во все ограниченные связные компоненты множества .

Литература

Рунге Теорема — статья из Математической энциклопедии. Чирка Е. М.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.