Теорема Вика для функционального интеграла
Теорема Вика для функционального интеграла — это обобщение теоремы Вика для многочлена от координат многомерного Гауссового вектора на случай континуального распределения Гаусса. Широко используется в аппарате функциональных интегралов.
Формулировка
Пусть случайное поле отвечает континуальному распределению Гаусса с нулевым матожиданием, т.е. . Тогда для средних значений произведений величин вида верно следующее:
если чётное, и
если нечётное.
Под подразумевается разбиение множества на пар , суммирование же идёт по всем возможным различным разбиениям на такие пары.
Примеры
Для произведения 4 элементов: .
Для произведения 6 элементов:
,
причём суммирование производится по всем возможным спариваниям выбранным из множества , например, или (всего таких спариваний 15).
Аналогично для случаев 8 и более элементов
Использование
Известно, что если Гауссова плотность распределения описывается формулой
,
то
.
То есть любую корреляционную функцию можно по теореме Вика выразить через комбинации , т.е., например
.
Литература
- Васильев А.Н. Квантовополевая ренормгруппа в теории критического поведения и стохастической динамике. — Издательство Петербургского института ядерной физики (ПИЯФ), 1998. — ISBN 5-86763-122-2.