Сферы Берже

Сферы Берже — однопараметрическое семейство римановых многообразий диффеоморфных трёхмерной сфере, которое часто используется как пример в различных вопросах римановой геометрии. Названы в честь Марселя Берже.

Все сферы Берже могут быть получены сжатием стандартной метрики на трёхмерной сфере вдоль слоёв расслоения Хопфа.

Построение

Рассмотрим как сферу в комплексном пространстве . На ней действует комплексными умножениями. Таким образом на можно построить изометрическое действие с помощью комплексных поворотов и сдвигов по . В есть однопараметрическое семейство подгрупп изоморфных , с элементами типа . Фактор по действию диффеоморфен , но индуцированная риманова метрика на нём отличается от стандартной. Полученное риманово многообразие называется сферой Берже.

Свойства

  • Из формулы О’Нэйла, секционная кривизна положительна.
  • При пространства коллапсируют к , стандартной 2-сфере радиуса .
  • При , тензор кривизны сходится к тензору кривизны пространства
  • Сферы Берже являются частным случаем левоинвариантных метрик на
  • Круговые сферы в комплексной проективной плоскости с метрикой Фубини — Штуди с точностью до коэффициента являются сферами Берже
  • На сферах Берже, окружности в расслоении Хопфа образуют двупараметрическое семейство замкнутых геодезических, которые при достаточно больших являются стабильными, (то есть нельзя добиться уменьшения их длины небольшими шевелениями).
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.