Сферические функции

Сферические функции представляют собой угловую часть семейства ортогональных решений уравнения Лапласа, записанную в сферических координатах. Они широко используются для изучения физических явлений в пространственных областях, ограниченных сферическими поверхностями и при решении физических задач, обладающих сферической симметрией. Сферические функции имеют большое значение в теории дифференциальных уравнений в частных производных и теоретической физике, в частности в задачах расчёта электронных орбиталей в атоме, гравитационного поля геоида, магнитного поля планет и интенсивности реликтового излучения.

Определение

Вещественные сферические функции Ylm, l=0…4 (сверху вниз), m=0…4 (слева направо). Функции отрицательного порядка Yl-m повёрнуты вокруг оси Z на 90/m градусов относительно функций положительного порядка.

Сферические функции являются собственными функциями оператора Лапласа в сферической системе координат (обозначение ). Они образуют ортонормированную систему в пространстве функций на сфере в трёхмерном пространстве:

,

где * обозначает комплексное сопряжение,  — символ Кронекера.

Сферические функции имеют вид

,

где функции являются решениями уравнения

и имеют вид

Здесь  — присоединённые многочлены Лежандра, а  — факториал.

Присоединенные многочлены Лежандра с отрицательным здесь вводятся как

Решение уравнения Лапласа в сферических координатах есть так называемая шаровая функция, получаемая умножением сферической функции на решение радиального уравнения.

Вещественная форма

Вещественные сферические функции до шестого порядка

Для сферических функций форма зависимости от угла  — комплексная экспонента. Используя Формулу Эйлера, можно ввести вещественные сферические функции. Иногда их удобнее использовать в связи с тем, что вещественные функции могут быть наглядно показаны на иллюстрациях, в отличие от комплексных.

Обратное преобразование:

Иногда вещественные сферические функции называют зональными, тессеральными и секториальными.[1]. Функции с m > 0 зависят от угла как косинус, а с m < 0 — как синус.

Повороты

Поворот вещественной сферической функции с m=0 и l=3. Коэффициенты не равны D-матрицам Вигнера, поскольку показаны вещественные функции, но могут быть получены при переразложении по комплексным функциям

Рассмотрим поворот системы координат , на Углы Эйлера который преобрaзует единичный вектор в вектор . При этом углы вектора в новой системе координат выражаются через углы в старой системе координат следующим образом

В новой системе координат сферическая функция с индексами и будет представима в виде линейной комбинации всех функций с тем же номером и различными . Коэффициентами в линейной комбинации являются комплексно- сопряженные D-матрицы Вигнера[2]

Сферические функции с номером образуют базис неприводимого представления размерности группы вращений SO(3).

Разложение плоской волны по сферическим функциям

Комплексная экспонента может быть представлена в виде разложения по сферическим функциям

Здесь  — сферическая функция Бесселя

Разложение произведений сферических функций

Разложения Клебша-Гордана для произведений двух сферических функций выглядят следующим образом [3]:

См. также

Примечания

  1. Тихонов А. Н., Самарский А. А. Уравнения математической физики
  2. M. A. Morrison, G. A. Parker. A guide to rotations in quantum mechanics. — Australian Journal of Physics, Vol. 40, pp. 465, 1987
  3. Варшалович Д. А., Москалёв А. Н., Херсонский В. К. Квантовая теория углового момента. — Л.: Наука, 1975.

Литература

Приложения

Ссылки

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.