Совершенная группа

Совершенная группа[1]группа , такая что отображение является изоморфизмом. Это отображение посылает элемент в автоморфизм сопряжения . Инъективность этого отображения равносильна тривиальности центра, а сюръективность — тому, что каждый автоморфизм является внутренним.

Другое значение этого термина: группа, совпадающая со своим коммутантом

Примерами являются симметрические группы при (теорема Гёльдера); при этом группа имеет нетривиальный центр, а у группы существует внешний автоморфизм.

Автоморфизмы простой группы образуют почти простую группу, а автоморфизмы неабелевой простой группы — совершенную группу.

Не любая группа, изоморфная своей группе автоморфизмов, является совершенной — необходимо, чтобы изоморфизм осуществлялся отображением сопряжения. Примером группы, для которой , но которая не является совершенной, является группа диэдра [2].

Примечания

  1. Каргаполов М. И., Мерзляков Ю. И. Основы теории групп. — 2-е изд. — Москва: Наука, 1977. — С. 62. — 240 с.
  2. Robinson, section 13.5

Литература

  • Robinson, Derek John Scott (1996), A course in the theory of groups, Berlin, New York: Springer-Verlag, ISBN 978-0-387-94461-6
  • Rotman, Joseph J. (1994), An introduction to the theory of groups, Berlin, New York: Springer-Verlag, ISBN 978-0-387-94285-8 (chapter 7, in particular theorems 7.15 and 7.17).

Ссылки

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.