Последовательное квадратичное программирование

Последовательное квадратичное программирование (англ. Sequential quadratic programming (SQP)) — один из наиболее распространённых и эффективных оптимизационных алгоритмов общего назначения[1], основной идеей которого является последовательное решение задач квадратичного программирования, аппроксимирующих данную задачу оптимизации. Для оптимизационных задач без ограничений алгоритм SQP преобразуется в метод Ньютона поиска точки, в которой градиент целевой функции обращается в ноль. Для решения исходной задачи с ограничениями-равенствами метод SQP преобразуется в специальную реализацию ньютоновских методов решения системы Лагранжа.

Основные сведения

Рассмотрим задачу нелинейного программирования следующего вида:

при ограничениях

Лагранжиан задачи примет следующий вид:

где и  — множители Лагранжа.

На итерации основного алгоритма определяются соответствующие направления поиска как решение следующей подзадачи квадратичного программирования:

при ограничениях

См. также

Примечания

  1. Трифонов А. Г. Optimization Toolbox 2.2 Руководство пользователя Архивная копия от 11 августа 2016 на Wayback Machine // Softline Co.

Литература


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.