Поризм Штейнера
Поризм Штейнера: Рассмотрим цепочку окружностей , каждая из которых касается двух соседних ( касается и ) и двух данных непересекающихся окружностей и . Тогда для любой окружности , касающейся и (одинаковым образом, если и не лежат одна в другой, внешним и внутренним образом — в противном случае), существует аналогичная цепочка из касающихся окружностей .
Доказывается применением инверсии, которая переводит пару окружностей и в концентрические.
Литература
- Коксетер Г. С. М., Грейтцер С. П. Новые встречи с геометрией. — М.: Наука, 1978. — Т. 14. — (Библиотека математического кружка).
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.