Первичный нуклеосинтез

Первичный нуклеосинтез — совокупность процессов, которые привели к образованию химического состава вещества во Вселенной до появления первых звёзд.

Таблица происхождения химических элементов. Синим цветом обозначена доля, возникшая при первичном нуклеосинтезе.

К началу первичного нуклеосинтеза, через 3 минуты после Большого взрыва, соотношение нейтронов и протонов составляло 1 к 7. Через 20 минут после Большого взрыва первичный нуклеосинтез завершился: в барионной массе Вселенной стали доминировать водород (75% массы) и гелий (25% массы). В меньшем количестве образовались дейтерий, гелий-3 и литий-7, другие же элементы сформировались в незначительном количестве. Наблюдаемое содержание различных элементов достаточно хорошо сходится с теоретически предсказанным, за исключением содержания лития-7. Несмотря на это исключение, считается, что реальная распространённость химических элементов хорошо описывается существующей теорией и свидетельствует о правильности современных представлений о Большом взрыве.

Описание

Первичный нуклеосинтез — совокупность процессов, которые привели к образованию химического состава вещества во Вселенной до появления первых звёзд[1].

Предшествующие события

В момент времени 0,1 с после Большого взрыва температура Вселенной составляла около 3⋅1010 K, а её вещество представляло собой электрон-позитрон-нейтринную плазму, в которой в небольшом количестве имелись нуклоны: протоны и нейтроны. В таких условиях происходили постоянные превращения протонов в нейтроны и обратно в следующих реакциях[2][3][комм. 1]:

Первоначально прямые и обратные реакции уравновешивали друг друга, и равновесная доля нейтронов от всех нуклонов зависела от температуры [3][4]:

где — разность энергий покоя нейтрона и протона, равная 1,29 МэВ, а постоянная Больцмана. Когда температура снизилась до 3⋅109 K, что соответствует возрасту Вселенной в 10 секунд, эти реакции практически прекратились, а равновесие перестало сохраняться — в этот момент значение составило около 0,17. Превращение нейтронов в протоны стало идти посредством бета-распада нейтрона со временем жизни около 880 секунд, и стало убывать экспоненциально: к моменту начала первичного нуклеосинтеза, через 3 минуты после Большого взрыва, снизилось до приблизительно 0,125, то есть на 1 нейтрон приходилось 7 протонов[2][5][6].

Процесс

Основные реакции первичного нуклеосинтеза
Зависимость количества различных элементов от времени после Большого взрыва

Когда с момента Большого взрыва прошло около 3 минут, температура Вселенной стала ниже 109 K. После этого стало возможно образование стабильных ядер дейтерия (дейтронов) при столкновении протона и нейтрона, практически все из которых в цепочке реакций превращались в более стабильные ядра гелия. Таким образом, практически все нейтроны в результате нуклеосинтеза оказались в ядрах гелия путём следующих реакций[5][7][8][комм. 2]:

Образование дейтронов было возможно и при более высоких температурах, но в таких условиях они были нестабильны и быстро распадались, а из-за невысокой плотности вещества столкновение двух ядер дейтерия с образованием более стабильного ядра было маловероятно. Тем не менее, возможны реакции с участием одного ядра дейтерия и одного нуклона, хотя их характерные сечения малы[7]:

Некоторая часть ядер гелия-4 сформировала литий. К образованию лития-7 приводили следующие реакции[9][10]:

Формирование этих химических элементов завершилось, когда после Большого взрыва прошло 20 минут. Кроме этих элементов, при первичном нуклеосинтезе образовались и более тяжёлые ядра, однако из-за отсутствия стабильных ядер с атомным весом 5 или 8[11] доля этих элементов оказалась ничтожной (см. ниже)[6][12].

Результаты

Когда первичный нуклеосинтез завершился, большая часть протонов — ядер водорода — осталась в свободном состоянии, составив 75% барионной массы Вселенной. Ядра гелия-4 составили около 25% барионной массы — эта величина зависит от доли нейтронов среди всех нуклонов и с хорошей точностью вдвое превышает её, поскольку ядро гелия содержит 2 протона и 2 нейтрона[5][8][13].

Менее распространёнными изотопами оказались дейтерий, гелий-3 и литий-7. По наблюдательным данным относительное содержание[комм. 3] дейтерия составило 2,5⋅10−5, гелия-3 — 0,9—1,3⋅10−5, лития-7 — 1,6⋅10−10, что в целом сходится с теоретическими предсказаниями (см. ниже)[6][12][14]. Также образовалось сопоставимое количество трития и бериллия-7, но эти изотопы нестабильны и после завершения первичного нуклеосинтеза распались: тритий превратился в гелий-3 путём бета-распада, а бериллий-7 — в литий-7 путём электронного захвата[15][16][17]:

Доли других элементов в веществе, которое образовалось при первичном нуклеосинтезе, оказались незначительными: например, относительное содержание бора-11 составило около 3⋅10−16, а углерода, азота и кислорода в сумме ― 10−15. Эти элементы в таком малом количестве не могли как-либо повлиять на параметры и эволюцию первых звёзд, которые сформировались из этого вещества[6][12].

Проверка космологических параметров

Зависимость количества элементов, образовавшихся при первичном нуклеосинтезе, от отношения числа барионов к числу фотонов во Вселенной

Наблюдаемые результаты первичного нуклеосинтеза дают возможность проверить, насколько правильными являются соответствующие теоретические модели. Так, например, стандартная модель первичного нуклеосинтеза — сценарий, где физика элементарных частиц описывается стандартной моделью, а космология — моделью ΛCDM[18], имеет лишь один свободный параметр : отношение числа барионов во Вселенной к числу фотонов. Поскольку число фотонов известно из наблюдений реликтового излучения, то зависит только от плотности барионов во Вселенной[19].

От параметра зависит содержание элементов первичного нуклеосинтеза. С ростом понижается конечное содержание дейтерия и гелия-3: чем больше барионная плотность, тем быстрее и эффективнее идут реакции превращения этих ядер в ядра гелия-4, и тем меньше их остаётся к завершению первичного нуклеосинтеза. Наоборот, содержание гелия-4 возрастает при увеличениии , хотя и довольно медленно: чем выше барионная плотность, тем раньше начинается первичный нуклеосинтез и тем большую долю от всех нуклонов составляют нейтроны, практически все из которых связываются в ядра гелия. Зависимость конечного содержания лития-7 от немонотонна и имеет минимум при около 2—3⋅10−10 — это связано с тем, что литий образуется в двух цепочках реакций, одна из которых идёт при малых , а другая — при больших, кроме того, вместе с образованием ядер лития шёл их распад[9].

Таким образом, если стандартная модель первичного нуклеосинтеза верна, то содержание различных химических элементов должно соответствовать одному и тому же . Эту величину возможно измерить и другими методами, например, по параметрам анизотропии реликтового излучения — такая оценка также должна согласовываться с распространённостью химических элементов. Оценка , полученная по данным WMAP, равна 6,2⋅10−10 и соответствует данным о содержании дейтерия, гелия-3 и гелия-4; для лития-7 теоретическая оценка в 4 раза превышает наблюдаемое значение. Для решения этой проблемы предлагаются различные решения, но в целом считается, что реальная распространённость химических элементов хорошо описывается существующей теорией и свидетельствует о правильности современных представлений о Большом взрыве[12][14].

Примечания

Комментарии

  1. нейтрон, протон, и электрон и позитрон, и электронное нейтрино и антинейтрино
  2. дейтрон, фотон
  3. Относительное содержание — отношение количества частиц данного изотопа к количеству частиц водорода

Источники

  1. Лукаш В. Н., Михеева Е. В. Первичный нуклеосинтез. Большая российская энциклопедия. Дата обращения: 21 августа 2021. Архивировано 27 февраля 2021 года.
  2. Вайнберг, 2013, с. 188—193.
  3. Сильченко, 2017, с. 107.
  4. Вайнберг, 2013, с. 191—192.
  5. Сильченко, 2017, с. 107—108.
  6. Pitrou C., Coc A., Uzan J-P., Vangioni E. Precision big bang nucleosynthesis with improved Helium-4 predictions (англ.) // Physics Reports. N. Y.: Elsevier, 2018. — 1 September (vol. 754). P. 1–66. ISSN 0370-1573. doi:10.1016/j.physrep.2018.04.005.
  7. Вайнберг, 2013, с. 195—196.
  8. Cosmology. Primordial nucleosynthesis (англ.). Encyclopedia Britannica. Дата обращения: 21 августа 2021. Архивировано 21 августа 2021 года.
  9. Сильченко, 2017, с. 108—109.
  10. Вайнберг, 2013, с. 202.
  11. Вайнберг, 2013, с. 196.
  12. Coc A., Vangioni E. Primordial nucleosynthesis (англ.) // International Journal of Modern Physics E. — Singapore: World Scientific, 2017. Vol. 26. P. 1741002. ISSN 0218-3013. doi:10.1142/S0218301317410026. Архивировано 19 августа 2019 года.
  13. Вайнберг, 2013, с. 196—199.
  14. Сильченко, 2017, с. 113—116.
  15. Вайнберг, 2013, с. 199.
  16. Yurchenko V. Yu., Ivanchik A. V. Spectral features of non-equilibrium antineutrinos of primordial nucleosynthesis (англ.) // Astroparticle Physics. — Amsterdam: Elsevier, 2021. — 1 January (vol. 127). P. 102537. ISSN 0927-6505. doi:10.1016/j.astropartphys.2020.102537.
  17. Khatri R., Sunyaev R. A. Time of primordial 7Be conversion into 7Li, energy release and doublet of narrow cosmological neutrino lines (англ.) // Astronomy Letters. М.: Science, 2011. — 1 June (vol. 37). P. 367–373. ISSN 1063-7737. doi:10.1134/S1063773711060041.
  18. Fields B. D. The Primordial Lithium Problem. 2. Standard BBN in light of WMAP: the lithium problem emerges. Infrared Processing and Analysis Center. Дата обращения: 23 августа 2021. Архивировано 23 августа 2021 года.
  19. Сильченко, 2017, с. 106.

Литература

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.