Отсутствие зависти

Отсу́тствие за́висти — это критерий справедливого дележа. При дележе, в результате которого отсутствует зависть[1], любой агент чувствует, что его доля не меньше доли остальных агентов, потому никакой агент не чувствует зависть.

Определения

Ресурс делится среди нескольких агентов, так что любой агент получает долю . Любой агент имеет субъективное отношение предпочтения для различных возможных долей. Говорят, что в результате дележа отсутствует зависть, если для любых и :

Если предпочтения агентов представлены функциями , то это определение эквивалентно утверждению:

Иначе, мы говорим, что агент завидует агенту , если предпочитает свой собственный кусок куску агента , то есть:

Говорят, что в результате дележа отсутствует зависть, если никакой агент не завидует другому агенту.

История

Критерий отсутствия зависти ввели для задачи справедливого разрезания торта Георгий А. Гамов и Марвин Стерн в 1958 году[2]. В контексте задачи справедливого разрезания торта отсутствие зависти означает, что каждый агент верит, что их доля по меньшей мере не меньше, чем любая другая доля. В контексте дележа обязанностей отсутствие зависти означает, что каждый агент считает, что их доля по меньшей мере не больше, чем другие доли. Решающим критерием является отсутствие у агента желания обменять свою долю на долю другого агента.

См статьи:

Дункан Фоли в 1967 году применил критерий отсутствия зависти для экономической задачи распределения ресурсов[3]. Он стал доминирующим критерием справедливости в экономике. См., например:

См. также:

Связь с другими критериями справедливости

Связь между пропорциональностью и свободой от зависти

Пропорциональность (ПД) и отсутствие зависти (ОЗ) являются двумя независимыми свойствами, но, в некоторых случаях, из одного свойства вытекает другое.

Когда все оценки являются аддитивными функциями множеств и весь торт разделён, выполняются следующие связи:

  • Для двух участников ПД и ОЗ эквивалентны
  • Для трёх и более участников из ОЗ вытекает ПД, но не наоборот. Например, возможен случай, когда каждый из трёх участников получает по 1/3 по его собственному субъективному мнению, но по мнению Алисы часть Боба оценивается в 2/3

Когда оценки являются лишь субаддитивными, из ОЗ всё ещё вытекает ПД, но из ПД больше не следует ОЗ, даже для двух участников — возможен случай, когда доля Алисы в её глазах сто́ит 1/2, но доля Боба сто́ит даже больше. Если же оценки супераддитивны, из ПД следует ОЗ для двух участников, но из ОЗ уже не следует ПД даже для двух участников — возможен случай, когда доля Алисы в её глазах сто́ит 1/4, но доля Боба сто́ит даже меньше. Аналогично, когда не весь торт разделён, из ОЗ не следует ПД. Импликации подытожены в следующей таблице:

Оценки2 участника3+ участника
Аддитивная
Субаддитивная
Супераддитивная-
Общего вида--

См. также

Примечания

  1. Иногда переводится как делёж без зависти, что вводит путаницу — как раз зависть играет основную роль в таком дележе. Правильнее такой делёж называть завистливым.
  2. Gamow, Stern, 1958.
  3. Foley, 1967, с. 45–98.
  4. Stefan, 2012.

Литература

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.