Нетотиентное число

В теории чисел под нетотиентным числом понимается положительное целое число n, не являющееся значением функции Эйлера, то есть не входящее в область значений функции Эйлера φ. Таким образом, для нетотиентного числа уравнение φ(x) = n не имеет решений. Другими словами, n – нетотиентное число, если не существует целого числа x, имеющего ровно n взаимно простых чисел меньших его. Все нечетные числа нетотиенты за исключением 1, поскольку функция Эйлера принимает только чётные значения. Первые пятьдесят чётных нетотиентых чисел:

14, 26, 34, 38, 50, 62, 68, 74, 76, 86, 90, 94, 98, 114, 118, 122, 124, 134, 142, 146, 152, 154, 158, 170, 174, 182, 186, 188, 194, 202, 206, 214, 218, 230, 234, 236, 242, 244, 246, 248, 254, 258, 266, 274, 278, 284, 286, 290, 298, 302 последовательность A005277 в OEIS

Чётное нетотиентное число может быть на единицу больше простого числа, но никогда на единицу меньше, поскольку все числа меньшие простого, по определению, взаимно просты с ним. Выразим это формально: для простого p функция Эйлера φ(p) = p  1. Также прямоугольное число p(p  1) определённо не является нетотиентным в случае простого p, поскольку φ(p2) = p(p  1).

Существует бесконечно много нетотиентных чисел, так как существует бесконечно много простых p, таких что все числа вида 2ap нетотиентны.

Ссылки

    This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.