Множество Витали

Множество Витали — первый пример множества вещественных чисел, не имеющего меры Лебега. Этот пример, ставший классическим, описал итальянский математик Джузеппе Витали в 1905 году.[1]

История

Годом ранее статьи Витали, в 1904 году, Анри Лебег опубликовал «Лекции об интегрировании и отыскании примитивных функций», где изложил свою теорию меры и высказал надежду, что она окажется применима к любому ограниченному множеству вещественных чисел. Открытие множества Витали показало, что эта надежда не оправдалась. В дальнейшем были обнаружены и другие контрпримеры, однако их построение всегда существенно опирается на аксиому выбора.

Построение

Рассмотрим следующее отношение эквивалентности на отрезке : если разница рациональна. Как обычно, это отношение эквивалентности разбивает интервал на классы эквивалентности, каждый из которых имеет счётную мощность, но их количество имеет мощность континуума. Далее, из каждого класса эквивалентности выберем по представителю — одной точке (здесь мы пользуемся аксиомой выбора). Тогда полученное множество представителей будет неизмеримым.

Действительно, если сдвинуть счётное число раз на все рациональные числа из интервала , то объединение будет содержать весь отрезок но при этом оно будет содержаться в отрезке . При этом «сдвинутые копии» множества не будут пересекаться друг с другом, что непосредственно следует из построения и .

Предположим, что измеримо по Лебегу, тогда возможны 2 варианта.

  • Мера E равна нулю. Тогда мера интервала , как счётного объединения множеств меры нуль, тоже будет равна нулю.
  • Мера E больше нуля. Тогда аналогично заключаем, что мера интервала , в силу счётной аддитивности меры Лебега, будет бесконечна.

В обоих случаях получается противоречие. Таким образом, множество Витали не измеримо по Лебегу.

Примечания

  1. Vitali, Giuseppe. Sul problema della misura dei gruppi di punti di una retta (итал.) // Bologna, Tip. Gamberini e Parmeggiani : diario. — 1905.

Литература

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.